Disentangling the effect of sex from brain size on brain organization and cognitive functioning

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY GeroScience Pub Date : 2025-01-06 DOI:10.1007/s11357-024-01486-5
Aliza Brzezinski-Rittner, Roqaie Moqadam, Yasser Iturria-Medina, M. Mallar Chakravarty, Mahsa Dadar, Yashar Zeighami
{"title":"Disentangling the effect of sex from brain size on brain organization and cognitive functioning","authors":"Aliza Brzezinski-Rittner, Roqaie Moqadam, Yasser Iturria-Medina, M. Mallar Chakravarty, Mahsa Dadar, Yashar Zeighami","doi":"10.1007/s11357-024-01486-5","DOIUrl":null,"url":null,"abstract":"<p>Neuroanatomical sex differences estimated in neuroimaging studies are confounded by total intracranial volume (TIV) as a major biological factor. Employing a matching approach widely used for causal modeling, we disentangled the effect of TIV from sex to study sex-differentiated brain aging trajectories, their relation to functional networks and cytoarchitectonic classes, brain allometry, and cognition. Using data from the UK Biobank, we created subsamples that removed, maintained, or exaggerated the TIV differences in the original sample. We compared regional and vertex-level sex estimates across subsamples. The overall sex-related differences diminished in head size–matched subsamples, suggesting that most of the observed variability results from TIV differences. Furthermore, bidirectional sex differences in brain neuroanatomy emerged that were previously masked by the effect of TIV. Allometry remained fairly consistent across lifespan and was not sex-differentiated. Finally, the matching process changed the direction of the estimated sex differences in “verbal and numerical reasoning” and “working memory”, suggesting that behavioral sex difference investigations can benefit from additional biological analysis to uncover the underlying factors contributing to cognition. Taken together, we provide new evidence disentangling sex differences from TIV as a relevant biological confound.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"12 7 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-024-01486-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroanatomical sex differences estimated in neuroimaging studies are confounded by total intracranial volume (TIV) as a major biological factor. Employing a matching approach widely used for causal modeling, we disentangled the effect of TIV from sex to study sex-differentiated brain aging trajectories, their relation to functional networks and cytoarchitectonic classes, brain allometry, and cognition. Using data from the UK Biobank, we created subsamples that removed, maintained, or exaggerated the TIV differences in the original sample. We compared regional and vertex-level sex estimates across subsamples. The overall sex-related differences diminished in head size–matched subsamples, suggesting that most of the observed variability results from TIV differences. Furthermore, bidirectional sex differences in brain neuroanatomy emerged that were previously masked by the effect of TIV. Allometry remained fairly consistent across lifespan and was not sex-differentiated. Finally, the matching process changed the direction of the estimated sex differences in “verbal and numerical reasoning” and “working memory”, suggesting that behavioral sex difference investigations can benefit from additional biological analysis to uncover the underlying factors contributing to cognition. Taken together, we provide new evidence disentangling sex differences from TIV as a relevant biological confound.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
期刊最新文献
Cerebromicrovascular mechanisms contributing to long COVID: implications for neurocognitive health Impact of adherence to the Mediterranean diet on stroke risk Disentangling the effect of sex from brain size on brain organization and cognitive functioning Digital cognitive training for functionality in mild cognitive impairment: a randomized controlled clinical trial Associations between physical activity, brain health, cognitive function, and circulating GPLD1 in healthy older (65–85 years) individuals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1