Accelerating weathering and thermal regulation performance of window frame applied with microencapsulated phase change thermochromic pigment coated wood material
Ahmet Can, Osman Gencel, Ahmet Sarı, Gökhan Hekimoğlu, Abid Ustaoglu
{"title":"Accelerating weathering and thermal regulation performance of window frame applied with microencapsulated phase change thermochromic pigment coated wood material","authors":"Ahmet Can, Osman Gencel, Ahmet Sarı, Gökhan Hekimoğlu, Abid Ustaoglu","doi":"10.1016/j.jobe.2024.111718","DOIUrl":null,"url":null,"abstract":"This study examines the impact of phase-change thermochromic (TC) coatings on the durability, color stability, and thermal regulation of poplar wood, focusing on potential applications in energy-efficient buildings. By applying accelerated weathering tests, the study assessed how TC pigments (red or yellow) at varying concentrations affect wood properties. The results showed that TC-treated wood undergoes significant color shifts depending on pigment concentration and temperature. For instance, at 25 °C, the color change (ΔE∗) reached 71.07 for red-20 samples and 68.30 for yellow-20, with increased lightness (L∗) at higher temperatures. Unlike untreated samples, TC-coated wood exhibited a whitening tendency as temperatures rose to 38 °C and 50 °C, suggesting a promising thermal regulation capability. Accelerated weathering tests revealed that TC-treated wood experienced greater color changes than control samples, though varnish coating helped reduce discoloration. Notably, thermal regulation tests demonstrated that TC-treated wood helps maintain cooler indoor temperatures during hot conditions and warmer temperatures in cold conditions, highlighting potential energy efficiency in building environments. This study provides a foundation for utilizing thermochromic materials in construction, offering insights into their weathering and thermal performance. Future studies should focus on optimizing TC formulations and assessing durability in real-world settings.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"21 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2024.111718","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the impact of phase-change thermochromic (TC) coatings on the durability, color stability, and thermal regulation of poplar wood, focusing on potential applications in energy-efficient buildings. By applying accelerated weathering tests, the study assessed how TC pigments (red or yellow) at varying concentrations affect wood properties. The results showed that TC-treated wood undergoes significant color shifts depending on pigment concentration and temperature. For instance, at 25 °C, the color change (ΔE∗) reached 71.07 for red-20 samples and 68.30 for yellow-20, with increased lightness (L∗) at higher temperatures. Unlike untreated samples, TC-coated wood exhibited a whitening tendency as temperatures rose to 38 °C and 50 °C, suggesting a promising thermal regulation capability. Accelerated weathering tests revealed that TC-treated wood experienced greater color changes than control samples, though varnish coating helped reduce discoloration. Notably, thermal regulation tests demonstrated that TC-treated wood helps maintain cooler indoor temperatures during hot conditions and warmer temperatures in cold conditions, highlighting potential energy efficiency in building environments. This study provides a foundation for utilizing thermochromic materials in construction, offering insights into their weathering and thermal performance. Future studies should focus on optimizing TC formulations and assessing durability in real-world settings.
期刊介绍:
The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.