A 3D millifluidic model of a dermal perivascular microenvironment on a chip†

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2025-01-06 DOI:10.1039/D4LC00898G
Chiara Martinelli, Alberto Bocconi, Sofia Milone, Teresa Baldissera, Leonardo Cherubin, Giovanni Buccioli, Simone Perottoni, Claudio Conci, Giulio Cerullo, Roberto Osellame, Giuseppe Chirico, Emanuela Jacchetti and Manuela Teresa Raimondi
{"title":"A 3D millifluidic model of a dermal perivascular microenvironment on a chip†","authors":"Chiara Martinelli, Alberto Bocconi, Sofia Milone, Teresa Baldissera, Leonardo Cherubin, Giovanni Buccioli, Simone Perottoni, Claudio Conci, Giulio Cerullo, Roberto Osellame, Giuseppe Chirico, Emanuela Jacchetti and Manuela Teresa Raimondi","doi":"10.1039/D4LC00898G","DOIUrl":null,"url":null,"abstract":"<p >The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, <em>in vitro</em> tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies. In this work, we designed and validated a tridimensional microstructured dynamic model of the dermal perivascular microenvironment on a chip. We carried out the fabrication of an array of microstructures by two-photon laser polymerization, then used as a 3D substrate for co-culture of human dermal fibroblasts and endothelial cells. We included the substrate in a miniaturized optically accessible bioreactor (MOAB) which provides the physiological interstitial flow, upon perfusion in the presence or absence of the pro-angiogenic stimuli VEGF and TGF-β1. We determined the parameters to be applied under dynamic conditions by an <em>in silico</em> model simulating individual 3D microenvironments within the bioreactor's chambers. We computed the fluid velocity and wall shear stress acting on endothelial cells along with the oxygen concentration profile, and we chose the most suitable flow rate for maintaining dermal physiological conditions. Experimental results showed the effectiveness of the developed platform as a 3D dynamic model of angiogenesis. This is the first combined experimental and computational study involving chemically stimulated 3D co-cultures for successfully simulating the physiological dermal perivascular microenvironment.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 3","pages":" 423-439"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d4lc00898g","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, in vitro tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies. In this work, we designed and validated a tridimensional microstructured dynamic model of the dermal perivascular microenvironment on a chip. We carried out the fabrication of an array of microstructures by two-photon laser polymerization, then used as a 3D substrate for co-culture of human dermal fibroblasts and endothelial cells. We included the substrate in a miniaturized optically accessible bioreactor (MOAB) which provides the physiological interstitial flow, upon perfusion in the presence or absence of the pro-angiogenic stimuli VEGF and TGF-β1. We determined the parameters to be applied under dynamic conditions by an in silico model simulating individual 3D microenvironments within the bioreactor's chambers. We computed the fluid velocity and wall shear stress acting on endothelial cells along with the oxygen concentration profile, and we chose the most suitable flow rate for maintaining dermal physiological conditions. Experimental results showed the effectiveness of the developed platform as a 3D dynamic model of angiogenesis. This is the first combined experimental and computational study involving chemically stimulated 3D co-cultures for successfully simulating the physiological dermal perivascular microenvironment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芯片上皮肤血管周围微环境的三维微流体模型。
血管生成过程在皮肤再生中起着关键作用,通过形成支持功能性组织再生的新型微血管网络,确保新生组织提供营养和氧气。不幸的是,目前大多数皮肤再生的治疗方法缺乏促进有效血管生成所需的血管化。因此,体外三维模型,辅以特定的生化信号,可以成为揭示新生血管机制和制定新的临床策略的有价值的工具。在这项工作中,我们设计并验证了芯片上皮肤血管周围微环境的三维微结构动态模型。我们通过双光子激光聚合制备了一系列微结构,然后将其用作人类真皮成纤维细胞和内皮细胞共培养的3D底物。我们将底物放入小型光学可及生物反应器(MOAB)中,该反应器在存在或不存在促血管生成刺激VEGF和TGF-β1的情况下提供灌注时的生理间质流动。我们通过模拟生物反应器腔内单个3D微环境的硅模型确定了在动态条件下应用的参数。我们计算了作用于内皮细胞的流体流速和壁面剪切应力以及氧浓度分布,并选择了最适合维持皮肤生理状态的流速。实验结果表明,该平台可作为血管生成的三维动态模型。这是第一个结合实验和计算的研究,涉及化学刺激的3D共培养,成功地模拟了生理皮肤血管周围微环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. Soft, wearable, microfluidic system for fluorometric analysis of loss of amino acids through eccrine sweat. Advances in modeling periodontal host-microbe interactions: insights from organotypic and organ-on-chip systems. Dimensional analysis meets AI for non-Newtonian droplet generation. iDEP-based single-cell isolation in a two-dimensional array of chambers addressed by easy-to-align wireless electrodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1