The Role of Lactate in Ischemic Stroke: As an Energy Source and Signaling Molecule.

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current protein & peptide science Pub Date : 2025-01-02 DOI:10.2174/0113892037335945241029111720
Rui Zhang, Xintong Li, Kemeng Liu, Meng Yang, Peiliang Dong, Hua Han
{"title":"The Role of Lactate in Ischemic Stroke: As an Energy Source and Signaling Molecule.","authors":"Rui Zhang, Xintong Li, Kemeng Liu, Meng Yang, Peiliang Dong, Hua Han","doi":"10.2174/0113892037335945241029111720","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is an acute cerebrovascular disease that causes brain tissue damage due to sudden blockage or rupture of blood vessels in the brain. According to the latest data from the Global Burden of Disease Study, the number of stroke patients worldwide is estimated to exceed 100 million, and more than 80% of patients suffer from stroke. Ischemic stroke is a type of stroke due to which two-thirds of the patients are disabled or even die, seriously affecting the patient's quality of life. Lactate is an indispensable substance in various physiological and pathological cells and plays a regulatory role in different aspects of energy metabolism and signal transduction. Studies have found that during cerebral ischemia and hypoxia, lactate concentration increases significantly, improving the energy supply to the ischemic area. Based on the scientific concept of lactate travelling through the brain, this article focuses on the important role of lactate as an energy source after ischemic stroke and analyzes the relationship between lactate as a signaling molecule and neuroprotection, angiogenesis, and anti-inflammatory effects. The aim of this study is to outline the molecular mechanisms by which lactate exerts its different effects in ischemic stroke. Some references are provided in this study for the research on lactate therapy for ischemic stroke.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037335945241029111720","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is an acute cerebrovascular disease that causes brain tissue damage due to sudden blockage or rupture of blood vessels in the brain. According to the latest data from the Global Burden of Disease Study, the number of stroke patients worldwide is estimated to exceed 100 million, and more than 80% of patients suffer from stroke. Ischemic stroke is a type of stroke due to which two-thirds of the patients are disabled or even die, seriously affecting the patient's quality of life. Lactate is an indispensable substance in various physiological and pathological cells and plays a regulatory role in different aspects of energy metabolism and signal transduction. Studies have found that during cerebral ischemia and hypoxia, lactate concentration increases significantly, improving the energy supply to the ischemic area. Based on the scientific concept of lactate travelling through the brain, this article focuses on the important role of lactate as an energy source after ischemic stroke and analyzes the relationship between lactate as a signaling molecule and neuroprotection, angiogenesis, and anti-inflammatory effects. The aim of this study is to outline the molecular mechanisms by which lactate exerts its different effects in ischemic stroke. Some references are provided in this study for the research on lactate therapy for ischemic stroke.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳酸在缺血性脑卒中中的作用:作为能量来源和信号分子。
中风是一种急性脑血管疾病,由于大脑血管突然堵塞或破裂而导致脑组织损伤。根据《全球疾病负担研究》(Global Burden of Disease Study)的最新数据,全球卒中患者人数估计超过1亿人,80%以上的患者患有卒中。缺血性中风是一种中风类型,三分之二的患者因此致残甚至死亡,严重影响患者的生活质量。乳酸是各种生理和病理细胞中不可缺少的物质,在能量代谢和信号转导的各个方面起着调节作用。研究发现,在脑缺血缺氧时,乳酸浓度显著升高,改善了缺血区域的能量供应。本文基于乳酸在脑内流动的科学概念,重点阐述了乳酸在缺血性脑卒中后作为能量来源的重要作用,并分析了乳酸作为信号分子与神经保护、血管生成和抗炎作用的关系。本研究的目的是概述乳酸盐在缺血性脑卒中中发挥其不同作用的分子机制。本研究为乳酸治疗缺血性脑卒中的研究提供一定的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protein & peptide science
Current protein & peptide science 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.
期刊最新文献
Chitosan: A Transformative Biopolymer for Targeted Protein, Peptide, and Gene Delivery. Circulating SFRP2 in Iranian Polycystic Ovarian Syndrome Patients with Infertility and Recurrent Pregnancy Loss and its Correlation with Insulin Resistance and Inflammation. Engineered Anti-Microbial Peptides Inhibit Cell Viability, Promote Apoptosis, and Induce Cell Cycle Arrest in SW620 Human Colon Adenocarcinoma Cells. A Valuable Target for Therapy: The Metalloproteinase ADAM10. Recent Advances in Co-Condensation and Co-Aggregation of Amyloid Proteins Linked to Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1