An untargeted metabolomics approach to evaluate enzymatically deconjugated steroids and intact steroid conjugates in urine as diagnostic biomarkers for adrenal tumors.
Nora Vogg, Eleanor North, Arne Gessner, Felix Fels, Markus R Heinrich, Matthias Kroiss, Max Kurlbaum, Martin Fassnacht, Martin F Fromm
{"title":"An untargeted metabolomics approach to evaluate enzymatically deconjugated steroids and intact steroid conjugates in urine as diagnostic biomarkers for adrenal tumors.","authors":"Nora Vogg, Eleanor North, Arne Gessner, Felix Fels, Markus R Heinrich, Matthias Kroiss, Max Kurlbaum, Martin Fassnacht, Martin F Fromm","doi":"10.1515/cclm-2024-1337","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Urinary steroid profiling after hydrolysis of conjugates is an emerging tool to differentiate aggressive adrenocortical carcinomas (ACC) from benign adrenocortical adenomas (ACA). However, the shortcomings of deconjugation are the lack of standardized and fully validated hydrolysis protocols and the loss of information about the originally conjugated form of the steroids. This study aimed to evaluate the quality of the deconjugation process and investigate novel diagnostic biomarkers in urine without enzymatic hydrolysis.</p><p><strong>Methods: </strong>24 h urine samples from 40 patients with ACC and 40 patients with ACA were analyzed by untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry both unmodified and after hydrolysis with arylsulfatase/glucuronidase from <i>Helix pomatia.</i> Both approaches were compared regarding the differentiation of ACC vs. ACA via ROC analyses and to evaluate the hydrolyzation efficiency of steroid conjugates.</p><p><strong>Results: </strong>Steroid glucuronides were fully deconjugated, while some disulfates and all monosulfates were still largely detectable after enzymatic hydrolysis, suggesting incomplete and variable deconjugation. In unhydrolyzed urine, steroid monosulfates showed the best differentiation between ACC and ACA (highest AUC=0.983 for C<sub>21</sub>H<sub>32</sub>O<sub>6</sub>S, followed by its isomer and two isomers with the molecular formula C<sub>21</sub>H<sub>32</sub>O<sub>7</sub>S). Moreover, several disulfates were highly abundant and increased in ACC compared to ACA.</p><p><strong>Conclusions: </strong>This work highlights the limitations of hydrolyzing steroid conjugates before analysis and shows a possible superiority of a direct analysis approach compared to a hydrolysis approach from a methodological point of view and regarding diagnostic accuracy. Several steroid conjugates were found as promising diagnostic biomarkers for differentiation between ACC and ACA.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-1337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Urinary steroid profiling after hydrolysis of conjugates is an emerging tool to differentiate aggressive adrenocortical carcinomas (ACC) from benign adrenocortical adenomas (ACA). However, the shortcomings of deconjugation are the lack of standardized and fully validated hydrolysis protocols and the loss of information about the originally conjugated form of the steroids. This study aimed to evaluate the quality of the deconjugation process and investigate novel diagnostic biomarkers in urine without enzymatic hydrolysis.
Methods: 24 h urine samples from 40 patients with ACC and 40 patients with ACA were analyzed by untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry both unmodified and after hydrolysis with arylsulfatase/glucuronidase from Helix pomatia. Both approaches were compared regarding the differentiation of ACC vs. ACA via ROC analyses and to evaluate the hydrolyzation efficiency of steroid conjugates.
Results: Steroid glucuronides were fully deconjugated, while some disulfates and all monosulfates were still largely detectable after enzymatic hydrolysis, suggesting incomplete and variable deconjugation. In unhydrolyzed urine, steroid monosulfates showed the best differentiation between ACC and ACA (highest AUC=0.983 for C21H32O6S, followed by its isomer and two isomers with the molecular formula C21H32O7S). Moreover, several disulfates were highly abundant and increased in ACC compared to ACA.
Conclusions: This work highlights the limitations of hydrolyzing steroid conjugates before analysis and shows a possible superiority of a direct analysis approach compared to a hydrolysis approach from a methodological point of view and regarding diagnostic accuracy. Several steroid conjugates were found as promising diagnostic biomarkers for differentiation between ACC and ACA.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!