Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression.
{"title":"Chemokine (C-C Motif) Ligand 2/CCR2/Extracellular Signal-Regulated Kinase Signal Induced through Cancer Cell-Macrophage Interaction Contributes to Hepatocellular Carcinoma Progression.","authors":"Nobuaki Ishihara, Yu-Ichiro Koma, Masaki Omori, Shohei Komatsu, Rikuya Torigoe, Hiroki Yokoo, Takashi Nakanishi, Keitaro Yamanaka, Yuki Azumi, Shuichi Tsukamoto, Takayuki Kodama, Mari Nishio, Manabu Shigeoka, Hiroshi Yokozaki, Takumi Fukumoto","doi":"10.1016/j.ajpath.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-infiltrating macrophages, known as tumor-associated macrophages, play a crucial role in the tumor microenvironment. Immunohistochemistry revealed that intratumoral CD68-positive macrophages are associated with poor prognosis and clinicopathologic factors in patients with hepatocellular carcinoma (HCC). Subsequently, an indirect co-culture system involving HCC cells and peripheral blood-derived macrophages was developed. cDNA microarray analysis revealed that chemokine (C-C motif) ligand 2 (CCL2) was highly expressed in HCC cells co-cultured with macrophages. CCL2 neutralization suppressed proliferation, migration, and phosphorylation of extracellular signal-regulated kinase (Erk) in HCC cells and macrophages enhanced through co-culture. In contrast, recombinant human CCL2 (rhCCL2) addition facilitated these malignant phenotypes and increased Erk phosphorylation levels in HCC cells and macrophages. The primary CCL2 receptor, CCR2, was expressed in HCC cells and macrophages and was up-regulated in co-cultured HCC cells. CCR2 inhibition suppressed malignant phenotypes and reduced phosphorylated levels of Erk enhanced by rhCCL2. Additionally, the inhibition of Erk signal suppressed rhCCL2-enhanced malignant phenotypes. Moreover, serum CCL2 levels were higher in patients with HCC than those in healthy donors. On the basis of immunohistochemistry, CCL2-positive cases with high CCR2 expression and phosphorylated Erk-positive cases exhibited poor survival outcomes. Therefore, CCL2 up-regulation through interactions between HCC cells and macrophages contributed to HCC progression, making the CCL2/CCR2/Erk signal a potential target for HCC treatment.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.12.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-infiltrating macrophages, known as tumor-associated macrophages, play a crucial role in the tumor microenvironment. Immunohistochemistry revealed that intratumoral CD68-positive macrophages are associated with poor prognosis and clinicopathologic factors in patients with hepatocellular carcinoma (HCC). Subsequently, an indirect co-culture system involving HCC cells and peripheral blood-derived macrophages was developed. cDNA microarray analysis revealed that chemokine (C-C motif) ligand 2 (CCL2) was highly expressed in HCC cells co-cultured with macrophages. CCL2 neutralization suppressed proliferation, migration, and phosphorylation of extracellular signal-regulated kinase (Erk) in HCC cells and macrophages enhanced through co-culture. In contrast, recombinant human CCL2 (rhCCL2) addition facilitated these malignant phenotypes and increased Erk phosphorylation levels in HCC cells and macrophages. The primary CCL2 receptor, CCR2, was expressed in HCC cells and macrophages and was up-regulated in co-cultured HCC cells. CCR2 inhibition suppressed malignant phenotypes and reduced phosphorylated levels of Erk enhanced by rhCCL2. Additionally, the inhibition of Erk signal suppressed rhCCL2-enhanced malignant phenotypes. Moreover, serum CCL2 levels were higher in patients with HCC than those in healthy donors. On the basis of immunohistochemistry, CCL2-positive cases with high CCR2 expression and phosphorylated Erk-positive cases exhibited poor survival outcomes. Therefore, CCL2 up-regulation through interactions between HCC cells and macrophages contributed to HCC progression, making the CCL2/CCR2/Erk signal a potential target for HCC treatment.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.