Anna Puiggalí-Jou, Isabel Hui, Lucrezia Baldi, Rea Frischknecht, Maryam Asadikorayem, Jakub Janiak, Parth Chansoria, Maxwell C McCabe, Martin J Stoddart, Kirk C Hansen, Karen L Christman, Marcy Zenobi-Wong
{"title":"Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix.","authors":"Anna Puiggalí-Jou, Isabel Hui, Lucrezia Baldi, Rea Frischknecht, Maryam Asadikorayem, Jakub Janiak, Parth Chansoria, Maxwell C McCabe, Martin J Stoddart, Kirk C Hansen, Karen L Christman, Marcy Zenobi-Wong","doi":"10.1088/1758-5090/ad9cc2","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad9cc2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).