Whole Genome Sequencing Reveals Genetic Differences Between Symbiodiniaceae Populations Among Reproductively and Geographically Isolated Acropora Colonies in Western Australia.
Sanna Y Eriksson, Mikhail V Matz, Peter D Vize, Natalie L Rosser
{"title":"Whole Genome Sequencing Reveals Genetic Differences Between Symbiodiniaceae Populations Among Reproductively and Geographically Isolated <i>Acropora</i> Colonies in Western Australia.","authors":"Sanna Y Eriksson, Mikhail V Matz, Peter D Vize, Natalie L Rosser","doi":"10.1002/ece3.70771","DOIUrl":null,"url":null,"abstract":"<p><p>Significant genetic differentiation between Symbiodiniaceae populations in coral hosts can be induced by a range of factors including geography, latitude, depth, temperature and light utilisation. The conventional method of measuring Symbiodiniaceae diversity involving the ITS2 region of rDNA has several limitations, stemming from insufficient genetic resolution and the multi-copy nature of the marker. This could be improved by using higher throughput whole genome sequencing to identify fine-scale population genetic differences and provide new insight into factors influencing coral-Symbiodiniaceae associations. The aim of this study was to investigate the genetic diversity of Symbiodiniaceae populations using low-coverage whole genome sequencing in sympatric populations of <i>Acropora cf. secale</i> and allopatric populations of <i>Acropora millepora</i> that reproduce in different seasons in Western Australia. Genetic diversity of Symbiodiniaceae populations in these two species was examined using principal coordinates analysis and permutational analysis of variance. This analysis revealed that while all colonies were dominated by <i>Cladocopium</i>, there was a significant genetic difference between Symbiodiniaceae populations in both species. In <i>A. millepora</i>, this variation could be due to the latitudinal variation between populations or differences in reproductive seasonality, but in sympatric populations of <i>A. cf. secale</i>, genetic differences between Symbiodiniaceae populations were clearly aligned with the reproductive seasonality of the coral host. The use of whole genome sequencing improved the sensitivity to detect Symbiodiniaceae genetic population structure between coral populations, which increases our ability to identify genetic and potentially functional differences associated with variation in Symbiodiniaceae populations.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":"e70771"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ece3.70771","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Significant genetic differentiation between Symbiodiniaceae populations in coral hosts can be induced by a range of factors including geography, latitude, depth, temperature and light utilisation. The conventional method of measuring Symbiodiniaceae diversity involving the ITS2 region of rDNA has several limitations, stemming from insufficient genetic resolution and the multi-copy nature of the marker. This could be improved by using higher throughput whole genome sequencing to identify fine-scale population genetic differences and provide new insight into factors influencing coral-Symbiodiniaceae associations. The aim of this study was to investigate the genetic diversity of Symbiodiniaceae populations using low-coverage whole genome sequencing in sympatric populations of Acropora cf. secale and allopatric populations of Acropora millepora that reproduce in different seasons in Western Australia. Genetic diversity of Symbiodiniaceae populations in these two species was examined using principal coordinates analysis and permutational analysis of variance. This analysis revealed that while all colonies were dominated by Cladocopium, there was a significant genetic difference between Symbiodiniaceae populations in both species. In A. millepora, this variation could be due to the latitudinal variation between populations or differences in reproductive seasonality, but in sympatric populations of A. cf. secale, genetic differences between Symbiodiniaceae populations were clearly aligned with the reproductive seasonality of the coral host. The use of whole genome sequencing improved the sensitivity to detect Symbiodiniaceae genetic population structure between coral populations, which increases our ability to identify genetic and potentially functional differences associated with variation in Symbiodiniaceae populations.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.