[Safety and efficacy assessments using human iPS cell-derived cardiomyocytes].

Hiroyuki Kawagishi, Yasunari Kanda
{"title":"[Safety and efficacy assessments using human iPS cell-derived cardiomyocytes].","authors":"Hiroyuki Kawagishi, Yasunari Kanda","doi":"10.1254/fpj.24043","DOIUrl":null,"url":null,"abstract":"<p><p>The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials. Recently, the movement toward alternatives to animal testing has accelerated internationally. New Approach Methodologies (NAMs), such as human inducible pluripotent stem cell (hiPSC) technology and in silico modeling & simulation, are considered valuable for drug development. It has been demonstrated that hiPSC-derived cardiomyocytes (hiPSC-CMs) are useful tools to assess drug-induced cardiotoxicity, including arrhythmia and cardiac contractile dysfunction, leading to the use of hiPSC-CMs in the drug review process. Advancing hiPSC technologies have enabled the generation of mature hiPSC-CMs and engineered heart tissues, which are expected to provide novel information in drug safety and efficacy evaluation. Furthermore, it would be possible to establish the non-clinical evaluation that takes into account individual differences by developing hiPSCs bearing characteristics specific to certain populations, such as pediatrics or rare disease patients. Here, we present the recent findings and future perspectives on non-clinical evaluation using hiPSC technology.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"4-8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.24043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials. Recently, the movement toward alternatives to animal testing has accelerated internationally. New Approach Methodologies (NAMs), such as human inducible pluripotent stem cell (hiPSC) technology and in silico modeling & simulation, are considered valuable for drug development. It has been demonstrated that hiPSC-derived cardiomyocytes (hiPSC-CMs) are useful tools to assess drug-induced cardiotoxicity, including arrhythmia and cardiac contractile dysfunction, leading to the use of hiPSC-CMs in the drug review process. Advancing hiPSC technologies have enabled the generation of mature hiPSC-CMs and engineered heart tissues, which are expected to provide novel information in drug safety and efficacy evaluation. Furthermore, it would be possible to establish the non-clinical evaluation that takes into account individual differences by developing hiPSCs bearing characteristics specific to certain populations, such as pediatrics or rare disease patients. Here, we present the recent findings and future perspectives on non-clinical evaluation using hiPSC technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[使用人类iPS细胞衍生心肌细胞的安全性和有效性评估]。
药品的延误和丢失在日本是一个严重的问题。为了克服这一问题,加强药物开发能力至关重要。对于药物开发来说,非临床试验方法的建立和进步是保证临床试验安全有效的必要条件。最近,国际上寻求替代动物实验的运动加速了。新的方法方法(NAMs),如人类诱导多能干细胞(hiPSC)技术和计算机建模和仿真,被认为对药物开发有价值。研究表明,hipsc衍生的心肌细胞(hiPSC-CMs)是评估药物诱导的心脏毒性(包括心律失常和心脏收缩功能障碍)的有用工具,因此在药物审查过程中使用hiPSC-CMs。先进的hiPSC技术使成熟的hiPSC- cms和工程化心脏组织的产生成为可能,这有望为药物安全性和有效性评估提供新的信息。此外,通过开发具有特定人群(如儿科或罕见疾病患者)特征的hipsc,可以建立考虑个体差异的非临床评估。在这里,我们介绍了使用hiPSC技术进行非临床评估的最新发现和未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
期刊最新文献
[Deep brain imaging by using GRIN lens].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1