Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer.

IF 2.8 4区 医学 Q2 ONCOLOGY Medical Oncology Pub Date : 2025-01-06 DOI:10.1007/s12032-024-02593-1
Fatemeh Irannejad, Shahrzad Shahbazi, Somayeh Reiisi, Razieh Heidari
{"title":"Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer.","authors":"Fatemeh Irannejad, Shahrzad Shahbazi, Somayeh Reiisi, Razieh Heidari","doi":"10.1007/s12032-024-02593-1","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress. The ZnO-, Se-, and Ag-NPs were then synthesized via a green synthesis method and subsequently characterized using techniques, such as FTIR, XRD, DLS, zeta potential analysis, FESEM, and TEM. The antioxidant capacity of the NPs was evaluated using a DPPH scavenging assay and their effect on superoxide dismutase enzyme activity was determined. HDF and A2780 cells were treated with varying concentrations of ZnO-, Se-, and Ag-NPs, and cell viability and colony formation were assessed using MTT and clonogenic assays, respectively. Additionally, qPCR was performed to analyze the expression of the candidate genes NOX4, SOD2, and NR4A4. Characterization techniques confirmed the successful synthesis of pure, crystalline, and spherical NPs. Antioxidant assays demonstrated the significant antioxidant properties of ZnO-, Se-, and Ag-NPs. In vitro studies indicated that ZnO-, Se-, and Ag-NPs effectively inhibited cell proliferation and suppressed colony formation, likely owing to the downregulation of NOX4 and upregulation of SOD2 genes. Our findings suggest that ZnO-, Se-, and Ag-NPs may serve as promising anticancer agents for ovarian cancer and NOX4 downregulation and SOD2 upregulation can be proposed as oxidative stress biomarkers; however, further experimental investigation is required to elucidate the therapeutic potential of NPs and the early detection potential of biomarkers.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 2","pages":"39"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02593-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress. The ZnO-, Se-, and Ag-NPs were then synthesized via a green synthesis method and subsequently characterized using techniques, such as FTIR, XRD, DLS, zeta potential analysis, FESEM, and TEM. The antioxidant capacity of the NPs was evaluated using a DPPH scavenging assay and their effect on superoxide dismutase enzyme activity was determined. HDF and A2780 cells were treated with varying concentrations of ZnO-, Se-, and Ag-NPs, and cell viability and colony formation were assessed using MTT and clonogenic assays, respectively. Additionally, qPCR was performed to analyze the expression of the candidate genes NOX4, SOD2, and NR4A4. Characterization techniques confirmed the successful synthesis of pure, crystalline, and spherical NPs. Antioxidant assays demonstrated the significant antioxidant properties of ZnO-, Se-, and Ag-NPs. In vitro studies indicated that ZnO-, Se-, and Ag-NPs effectively inhibited cell proliferation and suppressed colony formation, likely owing to the downregulation of NOX4 and upregulation of SOD2 genes. Our findings suggest that ZnO-, Se-, and Ag-NPs may serve as promising anticancer agents for ovarian cancer and NOX4 downregulation and SOD2 upregulation can be proposed as oxidative stress biomarkers; however, further experimental investigation is required to elucidate the therapeutic potential of NPs and the early detection potential of biomarkers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
期刊最新文献
Study of the effect of zinc oxide, selenium, and silver nanoparticles on the expression level of oxidative stress-associated genes in ovarian cancer. Investigation of potential anti-metastatic effect of metformin and caffeic acid combination therapy in breast cancer cell line in in-vitro culture model. Unraveling non-coding RNAs in breast cancer: mechanistic insights and therapeutic potential. Baicalein, a natural flavonoid in gastrointestinal cancers treatment: recent trends and future perspectives. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1