{"title":"FAK inhibition delays liver repair after acetaminophen-induced acute liver injury by suppressing hepatocyte proliferation and macrophage recruitment.","authors":"Qing Li, Qi Xu, Jialin Shi, Wei Dong, Junfei Jin, Chong Zhang","doi":"10.1097/HC9.0000000000000531","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.</p><p><strong>Methods: </strong>4D-label-free proteomics analysis was used to identify dysregulated proteins in the liver of APAP-treated mice. RNA-Seq, hematoxylin-eosin staining, immunohistochemical staining, immunofluorescence staining, quantitative PCR, western blotting, transwell were used to explore the underlying mechanisms.</p><p><strong>Results: </strong>Utilizing high throughput 4D-label-free proteomics analysis, we observed a notable increase in proteins related to the \"focal adhesion\" pathway in the livers of APAP-treated mice. Inhibiting focal adhesion kinase (FAK) activation with a specific inhibitor, 1,2,4,5-Benzenetetraamine tetrahydrochloride (also called Y15), resulted in reduced macrophage numbers, delayed necrotic cell clearance, and inhibited liver cell proliferation in the necrotic regions of APAP-treated mice. RNA-Seq analysis demonstrated that Y15 downregulated genes associated with \"cell cycle\" and \"phagosome\" pathways in the livers of APAP-treated mice. Furthermore, blocking extracellular matrix (ECM)-integrin activation with a competitive peptide inhibitor, Gly-Arg-Gly-Asp-Ser (GRGDS), suppressed FAK activation and liver cell proliferation without affecting macrophage recruitment to necrotic areas. Mechanistically, ECM-induced FAK activation upregulated growth-promoting cell cycle genes, leading to hepatocyte proliferation, while CCL2 enhanced FAK activation and subsequent macrophage recruitment via F-actin rearrangement.</p><p><strong>Conclusions: </strong>Overall, these findings underscore the pivotal role of FAK activation in liver repair post-APAP overdose by promoting liver cell proliferation and macrophage recruitment.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"8 11","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.
Methods: 4D-label-free proteomics analysis was used to identify dysregulated proteins in the liver of APAP-treated mice. RNA-Seq, hematoxylin-eosin staining, immunohistochemical staining, immunofluorescence staining, quantitative PCR, western blotting, transwell were used to explore the underlying mechanisms.
Results: Utilizing high throughput 4D-label-free proteomics analysis, we observed a notable increase in proteins related to the "focal adhesion" pathway in the livers of APAP-treated mice. Inhibiting focal adhesion kinase (FAK) activation with a specific inhibitor, 1,2,4,5-Benzenetetraamine tetrahydrochloride (also called Y15), resulted in reduced macrophage numbers, delayed necrotic cell clearance, and inhibited liver cell proliferation in the necrotic regions of APAP-treated mice. RNA-Seq analysis demonstrated that Y15 downregulated genes associated with "cell cycle" and "phagosome" pathways in the livers of APAP-treated mice. Furthermore, blocking extracellular matrix (ECM)-integrin activation with a competitive peptide inhibitor, Gly-Arg-Gly-Asp-Ser (GRGDS), suppressed FAK activation and liver cell proliferation without affecting macrophage recruitment to necrotic areas. Mechanistically, ECM-induced FAK activation upregulated growth-promoting cell cycle genes, leading to hepatocyte proliferation, while CCL2 enhanced FAK activation and subsequent macrophage recruitment via F-actin rearrangement.
Conclusions: Overall, these findings underscore the pivotal role of FAK activation in liver repair post-APAP overdose by promoting liver cell proliferation and macrophage recruitment.
期刊介绍:
Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction.