Dihydroquercetin Ameliorates Neuronal Ferroptosis in Rats After Subarachnoid Hemorrhage via the PI3K/AKT/Nrf2/HO-1 Pathway

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2025-01-05 DOI:10.1002/jbt.70099
Bao Zheng, Xiwei Zhou, Lujun Pang, Yanjun Che, Xin Qi
{"title":"Dihydroquercetin Ameliorates Neuronal Ferroptosis in Rats After Subarachnoid Hemorrhage via the PI3K/AKT/Nrf2/HO-1 Pathway","authors":"Bao Zheng,&nbsp;Xiwei Zhou,&nbsp;Lujun Pang,&nbsp;Yanjun Che,&nbsp;Xin Qi","doi":"10.1002/jbt.70099","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH. A rat SAH model was established using the endovascular perforation technique. Following SAH induction, DHQ was administered orally 1 h later. Assessments included SAH scores, neurological function, brain swelling, blood-brain barrier (BBB) integrity, neuronal damage, apoptosis levels, inflammation, and indicators of ferroptosis using various treatments. The HT22 cells were exposed to hemin to simulate SAH-like conditions under in vitro settings. Cell counting kit-8 assays, flow cytometry, enzyme?linked immunosorbent assay, BODIPY 581/591 C11 staining, western blot analysis, and biochemical kits were employed to evaluate the potential effects of DHQ. Moreover, the mechanisms responsible for the protective effect of DHQ were examined by western blot analysis. The in vivo findings revealed that DHQ mitigated neurological impairments, brain swelling, BBB disruption, and neuronal injury at 24 h post-SAH. DHQ also reduced neuronal degeneration, inflammation, and ferroptosis following SAH. The in vitro findings revealed that DHQ enhanced cell survival and reduced ferroptosis at 24 h following hemin exposure. Mechanistically, DHQ activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in SAH rats and hemin-treated HT22 cells to exert neuroprotective effects. In conclusion, this study reveals that DHQ can effectively decrease BBB permeability, brain edema, neurological dysfunctions, and ferroptosis post-SAH by activating the PI3K/AKT/Nrf2/HO-1 pathway.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70099","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subarachnoid hemorrhage (SAH) is a specific type of stroke. Dihydroquercetin (DHQ), a flavonoid, is known for its various pharmacological properties. This study aimed to explore the roles and mechanisms of DHQ in influencing the progression of SAH. A rat SAH model was established using the endovascular perforation technique. Following SAH induction, DHQ was administered orally 1 h later. Assessments included SAH scores, neurological function, brain swelling, blood-brain barrier (BBB) integrity, neuronal damage, apoptosis levels, inflammation, and indicators of ferroptosis using various treatments. The HT22 cells were exposed to hemin to simulate SAH-like conditions under in vitro settings. Cell counting kit-8 assays, flow cytometry, enzyme?linked immunosorbent assay, BODIPY 581/591 C11 staining, western blot analysis, and biochemical kits were employed to evaluate the potential effects of DHQ. Moreover, the mechanisms responsible for the protective effect of DHQ were examined by western blot analysis. The in vivo findings revealed that DHQ mitigated neurological impairments, brain swelling, BBB disruption, and neuronal injury at 24 h post-SAH. DHQ also reduced neuronal degeneration, inflammation, and ferroptosis following SAH. The in vitro findings revealed that DHQ enhanced cell survival and reduced ferroptosis at 24 h following hemin exposure. Mechanistically, DHQ activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in SAH rats and hemin-treated HT22 cells to exert neuroprotective effects. In conclusion, this study reveals that DHQ can effectively decrease BBB permeability, brain edema, neurological dysfunctions, and ferroptosis post-SAH by activating the PI3K/AKT/Nrf2/HO-1 pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双氢槲皮素通过PI3K/AKT/Nrf2/HO-1通路改善大鼠蛛网膜下腔出血后神经元铁下垂
蛛网膜下腔出血(SAH)是一种特殊类型的中风。二氢槲皮素(DHQ)是一种类黄酮,以其多种药理特性而闻名。本研究旨在探讨DHQ在影响SAH进展中的作用和机制。采用血管内穿孔技术建立大鼠SAH模型。SAH诱导后,1 h后口服DHQ。评估包括SAH评分、神经功能、脑肿胀、血脑屏障(BBB)完整性、神经元损伤、细胞凋亡水平、炎症和各种治疗方法的铁上吊指标。HT22细胞暴露于血红蛋白中模拟体外条件下的sah样条件。细胞计数试剂盒-8测定,流式细胞术,酶?采用联免疫吸附法、BODIPY 581/591 C11染色法、western blot分析和生化试剂盒评价DHQ的潜在作用。western blot分析DHQ的保护作用机制。体内研究结果显示,DHQ减轻了sah后24小时的神经损伤、脑肿胀、血脑屏障破坏和神经元损伤。DHQ还能减少SAH后的神经元变性、炎症和铁下垂。体外实验结果显示DHQ能提高血红素暴露后24小时的细胞存活率并减少铁下垂。DHQ激活SAH大鼠和hemin处理的HT22细胞中磷脂酰肌醇-4,5-二磷酸3激酶(PI3K)/蛋白激酶B (AKT)/核因子红系2相关因子2 (Nrf2)信号通路,发挥神经保护作用。综上所述,本研究表明DHQ可通过激活PI3K/AKT/Nrf2/HO-1通路,有效降低sah后血脑屏障通透性、脑水肿、神经功能障碍和铁下垂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
Curcumin Restrains TGF-β2-Induced Proliferation, Migration, Invasion and EMT in Lens Epithelial Cells by Regulating FGF7/ZEB1 Axis Mitochondrial Quality Control and Melatonin: A Strategy Against Myocardial Injury Sarsasapogenin Inhibits HCT116 and Caco-2 Cell Malignancy and Tumor Growth in a Xenograft Mouse Model of Colorectal Cancer by Inactivating MAPK Signaling Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis Issue information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1