Exploring the drug delivery capabilities of Nb2C MXene functionalized with oxygen and fluorine: A DFT study

IF 3 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2025-01-01 DOI:10.1016/j.jmgm.2024.108937
Mahmoud A.S. Sakr , Hazem Abdelsalam , Nahed H. Teleb , Mohamed A. Saad , Omar H. Abd-Elkader , Yushen Liu , Qinfang Zhang
{"title":"Exploring the drug delivery capabilities of Nb2C MXene functionalized with oxygen and fluorine: A DFT study","authors":"Mahmoud A.S. Sakr ,&nbsp;Hazem Abdelsalam ,&nbsp;Nahed H. Teleb ,&nbsp;Mohamed A. Saad ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Yushen Liu ,&nbsp;Qinfang Zhang","doi":"10.1016/j.jmgm.2024.108937","DOIUrl":null,"url":null,"abstract":"<div><div>MXenes quantum dots (QDs), including Nb<sub>2</sub>C, Nb<sub>2</sub>CO<sub>2</sub>, and Nb<sub>2</sub>CF<sub>2</sub>, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of Nb<sub>2</sub>C with O and F atoms enhances stability, with binding energies (BEs) of 7.335, 8.154, and 6.704 eV for Nb<sub>2</sub>C, Nb<sub>2</sub>CO<sub>2</sub>, and Nb<sub>2</sub>CF<sub>2</sub>, respectively. The drug-loading study reveals that Nb<sub>2</sub>C exhibits the highest adsorption energy of −6.775 eV at the surface site (2.053 Å), while Nb<sub>2</sub>CO<sub>2</sub> and Nb<sub>2</sub>CF<sub>2</sub> demonstrate weaker interactions with adsorption energies of −2.163 eV and −0.933 eV, respectively. Non-covalent interaction (NCI) and natural bond orbital (NBO) analyses show significant changes in electron density distribution upon drug interaction, with the natural charge on the O7 atom in Flu shifting slightly upon interaction. Optical property investigations indicate a blue shift in the absorption spectra for Nb<sub>2</sub>CO<sub>2</sub> (<em>λ</em><sub>max</sub> = 764.76 nm) and Nb<sub>2</sub>CF<sub>2</sub> (<em>λ</em><sub>max</sub> = 1108.71 nm), compared to Nb<sub>2</sub>C (<em>λ</em><sub>max</sub> = 2612.00 nm), confirming the tunability of these materials for therapeutic applications. By addressing key challenges in drug delivery, such as stability, controlled release, and interaction strength, this study establishes Nb<sub>2</sub>CO<sub>2</sub> and Nb<sub>2</sub>CF<sub>2</sub> as promising nanocarriers, with the potential to improve drug efficacy and minimize side effects in targeted cancer therapies.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"136 ","pages":"Article 108937"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324002377","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes quantum dots (QDs), including Nb2C, Nb2CO2, and Nb2CF2, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of Nb2C with O and F atoms enhances stability, with binding energies (BEs) of 7.335, 8.154, and 6.704 eV for Nb2C, Nb2CO2, and Nb2CF2, respectively. The drug-loading study reveals that Nb2C exhibits the highest adsorption energy of −6.775 eV at the surface site (2.053 Å), while Nb2CO2 and Nb2CF2 demonstrate weaker interactions with adsorption energies of −2.163 eV and −0.933 eV, respectively. Non-covalent interaction (NCI) and natural bond orbital (NBO) analyses show significant changes in electron density distribution upon drug interaction, with the natural charge on the O7 atom in Flu shifting slightly upon interaction. Optical property investigations indicate a blue shift in the absorption spectra for Nb2CO2 (λmax = 764.76 nm) and Nb2CF2 (λmax = 1108.71 nm), compared to Nb2C (λmax = 2612.00 nm), confirming the tunability of these materials for therapeutic applications. By addressing key challenges in drug delivery, such as stability, controlled release, and interaction strength, this study establishes Nb2CO2 and Nb2CF2 as promising nanocarriers, with the potential to improve drug efficacy and minimize side effects in targeted cancer therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索氧氟功能化Nb2C MXene的药物传递能力:DFT研究。
MXenes量子点(QDs),包括Nb2C, Nb2CO2和Nb2CF2,是具有特殊结构,电子和光学特性的新兴材料,使其非常适合生物医学应用。本研究以氟尿嘧啶(Flu)为模型药物,研究了这些量子点的结构优化、稳定性、电子性质和载药势。结构分析表明,Nb2C、Nb2CO2和Nb2CF2的O和F原子功能化提高了Nb2C的稳定性,其结合能(BEs)分别为7.335、8.154和6.704 eV。载药研究表明,Nb2C在表面位置的吸附能最高,为-6.775 eV (2.053 Å), Nb2CO2和Nb2CF2的相互作用较弱,吸附能分别为-2.163 eV和-0.933 eV。非共价相互作用(NCI)和自然键轨道(NBO)分析表明,在药物相互作用过程中,电子密度分布发生了显著变化,流感病毒O7原子上的自然电荷在相互作用过程中略有移动。光学性质研究表明,与Nb2C (λmax = 2612.00 nm)相比,Nb2CO2 (λmax = 764.76 nm)和Nb2CF2 (λmax = 1108.71 nm)的吸收光谱发生了蓝移,证实了这些材料在治疗应用方面的可调性。通过解决药物递送方面的关键挑战,如稳定性、控释和相互作用强度,本研究确定了Nb2CO2和Nb2CF2作为有前途的纳米载体,在靶向癌症治疗中具有提高药物疗效和减少副作用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Mechanistic study of the steric effect of Lewis acids AlCl3 and TiBr4 on the asynchronous [4+2] cycloaddition reaction of isoprene with Aryl acid: MEDT study. Identification of structural fragments and field point-based design of novel p38α MAPK inhibitor: Integrating 2D and 3D-QSAR models with advanced in-silico techniques. Computational investigation of high Curie temperature, magnetic anisotropy and optical properties of new Zr based half-Heusler compounds Comparative efficiency of structure activity relationship and proteochemometric modelling. Efficient structure elucidation and investigation on the antibacterial activity of Carbamide-Butanedioic Acid: DFT perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1