Erol Can Bayraktar, Phyu P Aung, Pavandeep Gill, Guomiao Shen, Varshini Vasudevaraja, Zongshan Lai, Luis Chiriboga, Doina Ivan, Priyadharsini Nagarajan, Jonathan L Curry, Carlos A Torres-Cabala, Victor G Prieto, George Jour
{"title":"Genomic and Transcriptomic Profiling of Digital Papillary Adenocarcinomas Reveals Alterations in Matrix Remodeling and Metabolic Genes.","authors":"Erol Can Bayraktar, Phyu P Aung, Pavandeep Gill, Guomiao Shen, Varshini Vasudevaraja, Zongshan Lai, Luis Chiriboga, Doina Ivan, Priyadharsini Nagarajan, Jonathan L Curry, Carlos A Torres-Cabala, Victor G Prieto, George Jour","doi":"10.1111/cup.14782","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Digital papillary adenocarcinoma (DPAC) is a rare but aggressive cutaneous malignant sweat gland neoplasm that occurs on acral sites. Despite its clinical significance, the cellular and genetic characteristics of DPAC remain incompletely understood.</p><p><strong>Methods: </strong>We conducted a comprehensive genomic and transcriptomic analysis of DPAC (n = 14) using targeted next-generation DNA and RNA sequencing, along with gene expression profiling employing the Nanostring Technologies nCounter IO 360 Panel. Gene expression in DPAC was compared to that in hidradenoma (n = 10). Immunohistochemistry was employed to validate gene expression.</p><p><strong>Results: </strong>Two out of eight DPACs showed fusion gene rearrangements (CRTC3::MAML2 and TRPS1::PLAG1). No uniform mutational signature was detected in DPAC. Comparative gene expression analysis revealed an enrichment of genes related to matrix remodeling, metabolism, and DNA damage repair. Hallmark pathway analysis demonstrated significant upregulation of E2F target genes in DPAC compared to hidradenoma (p = 0.00710). Human papillomavirus-42 was found to be positive in all of our tested DPAC cases. Immunohistochemistry confirmed increased protein expression of CD56, CDC20, and SOX10 in DPAC. Notably, most DPAC tumors also exhibited B-cell infiltration, as indicated by CD20 staining.</p><p><strong>Conclusions: </strong>Our findings reveal novel fusions and validate altered replication pathways related to HPV42 in DPAC.</p>","PeriodicalId":15407,"journal":{"name":"Journal of Cutaneous Pathology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cutaneous Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cup.14782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Digital papillary adenocarcinoma (DPAC) is a rare but aggressive cutaneous malignant sweat gland neoplasm that occurs on acral sites. Despite its clinical significance, the cellular and genetic characteristics of DPAC remain incompletely understood.
Methods: We conducted a comprehensive genomic and transcriptomic analysis of DPAC (n = 14) using targeted next-generation DNA and RNA sequencing, along with gene expression profiling employing the Nanostring Technologies nCounter IO 360 Panel. Gene expression in DPAC was compared to that in hidradenoma (n = 10). Immunohistochemistry was employed to validate gene expression.
Results: Two out of eight DPACs showed fusion gene rearrangements (CRTC3::MAML2 and TRPS1::PLAG1). No uniform mutational signature was detected in DPAC. Comparative gene expression analysis revealed an enrichment of genes related to matrix remodeling, metabolism, and DNA damage repair. Hallmark pathway analysis demonstrated significant upregulation of E2F target genes in DPAC compared to hidradenoma (p = 0.00710). Human papillomavirus-42 was found to be positive in all of our tested DPAC cases. Immunohistochemistry confirmed increased protein expression of CD56, CDC20, and SOX10 in DPAC. Notably, most DPAC tumors also exhibited B-cell infiltration, as indicated by CD20 staining.
Conclusions: Our findings reveal novel fusions and validate altered replication pathways related to HPV42 in DPAC.
期刊介绍:
Journal of Cutaneous Pathology publishes manuscripts broadly relevant to diseases of the skin and mucosae, with the aims of advancing scientific knowledge regarding dermatopathology and enhancing the communication between clinical practitioners and research scientists. Original scientific manuscripts on diagnostic and experimental cutaneous pathology are especially desirable. Timely, pertinent review articles also will be given high priority. Manuscripts based on light, fluorescence, and electron microscopy, histochemistry, immunology, molecular biology, and genetics, as well as allied sciences, are all welcome, provided their principal focus is on cutaneous pathology. Publication time will be kept as short as possible, ensuring that articles will be quickly available to all interested in this speciality.