Enhancing land feature classification with the BTR Extractor: A novel software package for high-accuracy analysis of aerial laser scan data

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-12-09 DOI:10.1016/j.mex.2024.103090
Jamshid Talebi, Zahra Azizi
{"title":"Enhancing land feature classification with the BTR Extractor: A novel software package for high-accuracy analysis of aerial laser scan data","authors":"Jamshid Talebi,&nbsp;Zahra Azizi","doi":"10.1016/j.mex.2024.103090","DOIUrl":null,"url":null,"abstract":"<div><div>The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the \"BTR\" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:<ul><li><span>–</span><span><div>Comparing classification methods using airborne laser scanning data.</div></span></li><li><span>–</span><span><div>Implementing supervised algorithms for high-accuracy classification.</div></span></li><li><span>–</span><span><div>Evaluating the performance against existing software like TerraSolid.</div></span></li></ul></div><div>The user-friendly interface allows data entry, training data collection, and selection of classification methods. We employed five methods (Bayesian algorithms, support vector machine, K-nearest neighbor, C-Tree, and discriminant analysis) to classify land features. Comparative results show the BTR extractor outperforms TerraSolid, particularly in supervised classification, demonstrating high accuracy and reliable implementation in the studied area. Our findings advocate for the use of supervised algorithms in classifying cloud data for enhanced accuracy and efficiency in remote sensing applications.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103090"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:
  • Comparing classification methods using airborne laser scanning data.
  • Implementing supervised algorithms for high-accuracy classification.
  • Evaluating the performance against existing software like TerraSolid.
The user-friendly interface allows data entry, training data collection, and selection of classification methods. We employed five methods (Bayesian algorithms, support vector machine, K-nearest neighbor, C-Tree, and discriminant analysis) to classify land features. Comparative results show the BTR extractor outperforms TerraSolid, particularly in supervised classification, demonstrating high accuracy and reliable implementation in the studied area. Our findings advocate for the use of supervised algorithms in classifying cloud data for enhanced accuracy and efficiency in remote sensing applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用BTR提取器增强地物分类:一种用于航空激光扫描数据高精度分析的新型软件包。
利用航空激光扫描数据半自动和自动提取建筑物、树木和道路等土地特征在土地利用变化研究和城市管理中至关重要。本研究介绍了一种新的软件包“BTR”提取器,旨在提高从航空激光扫描仪获得的超级点中识别的现象的分类精度。我们的方法主要集中在:-利用机载激光扫描数据比较分类方法。-实现监督算法,实现高精度分类。-评估现有软件如TerraSolid的性能。用户友好的界面允许数据输入、训练数据收集和分类方法的选择。采用贝叶斯算法、支持向量机、k近邻、c树和判别分析五种方法对地物进行分类。对比结果表明,BTR提取器优于TerraSolid,特别是在监督分类方面,在研究区域显示出较高的准确性和可靠的实现。我们的研究结果提倡使用监督算法对云数据进行分类,以提高遥感应用的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
PyPortOptimization: A portfolio optimization pipeline leveraging multiple expected return methods, risk models, and post-optimization allocation techniques IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT Advanced load balancing techniques using MIMO fuzzy logic: A panel distribution case study at state polytechnic of Malang A novel hybrid CLARA and fuzzy time series Markov chain model for predicting air pollution in Jakarta From lab to real-life: A three-stage validation of wearable technology for stress monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1