Aqueous and ethanolic extracts of Moringa oleifera leaves induce selective cytotoxicity in Raji and Jurkat cell lines by activating the P21 pathway independent of P53.
{"title":"Aqueous and ethanolic extracts of Moringa oleifera leaves induce selective cytotoxicity in Raji and Jurkat cell lines by activating the P21 pathway independent of P53.","authors":"Leila Rajabi, Mostafa Ebrahimdoost, Seyed Amin Mohammadi, Hamed Soleimani Samarkhazan, Gholamreza Khamisipour, Mojtaba Aghaei","doi":"10.1007/s11033-024-10200-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The traditional use of Moringa oleifera (MO), an essential food source in Africa and Asia, to cure various diseases dates back thousands of years. This study examines the aqueous and ethanolic leaf extracts of MO's in vitro anti-leukemia capabilities.</p><p><strong>Methods: </strong>After preparing aqueous and ethanolic MO leaf extracts, cells were treated with various concentrations for 48 h. Cell viability was measured via MTT assay, and apoptotic pathways were analyzed using flow cytometry and Annexin V-PI staining. Following RNA extraction and cDNA synthesis, cells were exposed to the IC50 (150 µg/ml) for 48 h. Real-time PCR assessed the expression of P21, P53, BCL2, and Survivin genes. Peripheral blood mononuclear cells (PBMCs) served as the control group.</p><p><strong>Results: </strong>MO aqueous and ethanol extracts showed cytotoxicity, with cancer cells being more sensitive. Flow cytometry confirmed higher apoptotic activity in Jurkat and Raji cells compared to PBMCs. The extracts increased P21 expression in Jurkat cells but did not significantly affect P53, BCL2, or Survivin. Similarly, in Raji cells, P21, BCL2, and Survivin were elevated, while P53 remained unchanged. Gene expression in healthy PBMCs was unaffected by the extracts.</p><p><strong>Conclusion: </strong>This study shows that leukemia cells (Raji and Jurkat) are more sensitive to MO's aqueous and ethanolic extracts than healthy cells. The results suggest developing MO extracts as a cutting-edge leukemia treatment.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"102"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10200-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The traditional use of Moringa oleifera (MO), an essential food source in Africa and Asia, to cure various diseases dates back thousands of years. This study examines the aqueous and ethanolic leaf extracts of MO's in vitro anti-leukemia capabilities.
Methods: After preparing aqueous and ethanolic MO leaf extracts, cells were treated with various concentrations for 48 h. Cell viability was measured via MTT assay, and apoptotic pathways were analyzed using flow cytometry and Annexin V-PI staining. Following RNA extraction and cDNA synthesis, cells were exposed to the IC50 (150 µg/ml) for 48 h. Real-time PCR assessed the expression of P21, P53, BCL2, and Survivin genes. Peripheral blood mononuclear cells (PBMCs) served as the control group.
Results: MO aqueous and ethanol extracts showed cytotoxicity, with cancer cells being more sensitive. Flow cytometry confirmed higher apoptotic activity in Jurkat and Raji cells compared to PBMCs. The extracts increased P21 expression in Jurkat cells but did not significantly affect P53, BCL2, or Survivin. Similarly, in Raji cells, P21, BCL2, and Survivin were elevated, while P53 remained unchanged. Gene expression in healthy PBMCs was unaffected by the extracts.
Conclusion: This study shows that leukemia cells (Raji and Jurkat) are more sensitive to MO's aqueous and ethanolic extracts than healthy cells. The results suggest developing MO extracts as a cutting-edge leukemia treatment.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.