{"title":"Enhanced skin penetration of curcumin by a nanoemulsion-embedded oligopeptide hydrogel for psoriasis topical therapy.","authors":"Kehan Chen, Hui Yang, Guo Xu, Yunhan Hu, Xue Tian, Song Qin, Tianyue Jiang","doi":"10.1039/d4md00781f","DOIUrl":null,"url":null,"abstract":"<p><p>Topical delivery of therapeutics on the skin can effectively alleviate skin symptoms of psoriasis and reduce systemic toxicity. However, the low delivery efficiency caused by the stratum corneum barrier limits the therapeutic impact. Here, we reported an oligopeptide hydrogel that encapsulates cell-penetrating-peptide (CPP)-decorated curcumin-loaded nanoemulsions (Cur-CNEs) to enhance the skin penetration of curcumin for topical treatment of psoriasis. After being applied to the skin of psoriatic mice, the Cur-CNE embedded oligopeptide hydrogel (Cur-CNEs/Gel) provided a prolonged residue time of Cur-CNEs on the skin lesion. The fluidic and elastic properties of the nanoemulsions enabled them to effectively pass through the interstitial spaces of the stratum corneum, while the CPP decoration further enhanced skin penetration and cellular uptake of Cur-CNEs. The Cur-CNEs/Gel exhibits effective alleviation of the symptoms of psoriasis in mice and provides a promising strategy for topical treatment of psoriasis.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00781f","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Topical delivery of therapeutics on the skin can effectively alleviate skin symptoms of psoriasis and reduce systemic toxicity. However, the low delivery efficiency caused by the stratum corneum barrier limits the therapeutic impact. Here, we reported an oligopeptide hydrogel that encapsulates cell-penetrating-peptide (CPP)-decorated curcumin-loaded nanoemulsions (Cur-CNEs) to enhance the skin penetration of curcumin for topical treatment of psoriasis. After being applied to the skin of psoriatic mice, the Cur-CNE embedded oligopeptide hydrogel (Cur-CNEs/Gel) provided a prolonged residue time of Cur-CNEs on the skin lesion. The fluidic and elastic properties of the nanoemulsions enabled them to effectively pass through the interstitial spaces of the stratum corneum, while the CPP decoration further enhanced skin penetration and cellular uptake of Cur-CNEs. The Cur-CNEs/Gel exhibits effective alleviation of the symptoms of psoriasis in mice and provides a promising strategy for topical treatment of psoriasis.