A graph neural architecture search approach for identifying bots in social media.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1509179
Georgios Tzoumanekas, Michail Chatzianastasis, Loukas Ilias, George Kiokes, John Psarras, Dimitris Askounis
{"title":"A graph neural architecture search approach for identifying bots in social media.","authors":"Georgios Tzoumanekas, Michail Chatzianastasis, Loukas Ilias, George Kiokes, John Psarras, Dimitris Askounis","doi":"10.3389/frai.2024.1509179","DOIUrl":null,"url":null,"abstract":"<p><p>Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1509179"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1509179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于识别社交媒体机器人的图神经架构搜索方法。
包括X、Facebook和Instagram在内的社交媒体平台每天都有数百万用户,这催生了机器人自动程序,传播错误信息和意识形态,对现实世界产生了切实的影响。虽然X平台上的机器人检测已经成为许多深度学习模型的领域,并取得了足够的结果,但大多数方法都忽略了社交媒体关系的图结构,并且通常依赖于手工设计的架构。我们的工作介绍了一种神经架构搜索(NAS)技术的实现,即深度和灵活的图神经架构搜索(DFG-NAS),专门针对关系图卷积神经网络(RGCNs)在x平台上的机器人检测任务。我们的模型构建了一个包含用户关系及其元数据的图。然后,利用DFG-NAS自动搜索RGCNs中传播和转换函数的最优配置。我们的实验是在TwiBot-20数据集上进行的,构建了一个有229,580个节点和227,979条边的图。我们在搜索过程中研究了具有最高性能的五种架构,并实现了85.7%的准确率,超过了最先进的模型。我们的方法不仅解决了机器人检测的挑战,而且倡导在神经网络设计自动化中更广泛地实施NAS模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Examining the integration of artificial intelligence in supply chain management from Industry 4.0 to 6.0: a systematic literature review. The technology acceptance model and adopter type analysis in the context of artificial intelligence. An analysis of artificial intelligence automation in digital music streaming platforms for improving consumer subscription responses: a review. Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm. SineKAN: Kolmogorov-Arnold Networks using sinusoidal activation functions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1