TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-12-09 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbae196
Jenniffer Roa Lozano, Mataya Duncan, Duane D McKenna, Todd A Castoe, Michael DeGiorgio, Richard Adams
{"title":"TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.","authors":"Jenniffer Roa Lozano, Mataya Duncan, Duane D McKenna, Todd A Castoe, Michael DeGiorgio, Richard Adams","doi":"10.1093/bioadv/vbae196","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature.</p><p><strong>Results: </strong>We introduce <i>TraitTrainR</i>, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. <i>TraitTrainR</i> employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, <i>TraitTrainR</i> permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of <i>TraitTrainR</i>, and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying <i>TraitTrainR</i> to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology.</p><p><strong>Availability and implementation: </strong><i>TraitTrainR</i> is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae196"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature.

Results: We introduce TraitTrainR, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. TraitTrainR employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, TraitTrainR permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of TraitTrainR, and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying TraitTrainR to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology.

Availability and implementation: TraitTrainR is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TraitTrainR:在连续性状进化模型下加速大规模模拟。
动机:比较性状数据的规模和范围正以前所未有的速度扩大,而最近在进化建模和模拟方面的进展有时难以跟上这一步伐。在这种背景下,组织良好、灵活的大规模进化模拟应用程序为理解模型提供了希望,更重要的是,我们有能力用从自然界采样的真实特征数据自信地估计它们。结果:我们引入了TraitTrainR,这是一个R包,用于在复杂的连续性状进化模型下进行高效、大规模的模拟。TraitTrainR采用多种输出格式,支持流行的特征数据转换,适应多特征进化,并在定义输入参数空间和模型堆叠方面表现出灵活性。此外,TraitTrainR允许测量误差,允许调查其对进化推理的潜在影响。我们设想了TraitTrainR的丰富应用,并通过在三个经验系统发育案例研究中检查进化模型选择问题来演示这样一个例子。总的来说,这些应用TraitTrainR来探索模型选择问题的演示强调了它在解决比较生物学中关键问题(包括与实验设计和统计能力相关的问题)方面的实用性和更广泛的前景。可用性和实现:TraitTrainR是在R 4.4.0中开发的,可以在https://github.com/radamsRHA/TraitTrainR/上免费获得,其中包括详细的文档,快速入门指南和一步一步的教程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Fluoro-forest: a random forest workflow for cell type annotation in high-dimensional immunofluorescence imaging with limited training data. Beyond synthetic lethality in large-scale metabolic and regulatory network models via genetic minimal intervention set. Perspectives in computational mass spectrometry: recent developments and key challenges. Computational identification of Azadirachta indica compounds targeting trypanothione reductase in Leishmania infantum. DCGAT-DTI: dynamic cross-graph attention network for drug-target interaction prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1