1H NMR-based metabolomic analysis of hypersalinity-induced oviparity in brine shrimp.

Wei-Yi Lee, Chen-Hsun Liu, Bo-Hua Yu, Yung-Kuo Lee, Chiu-Hui Kuo, Cheng-Yi Huang, Chang Yu-Teng, Zi-Yan Xu, Kuohsun Chiu
{"title":"<sup>1</sup>H NMR-based metabolomic analysis of hypersalinity-induced oviparity in brine shrimp.","authors":"Wei-Yi Lee, Chen-Hsun Liu, Bo-Hua Yu, Yung-Kuo Lee, Chiu-Hui Kuo, Cheng-Yi Huang, Chang Yu-Teng, Zi-Yan Xu, Kuohsun Chiu","doi":"10.1016/j.cbd.2024.101409","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the mechanisms by which high salinity conditions stimulate adult Artemia females to produce diapaused cysts. We used a <sup>1</sup>H NMR-based metabolomic approach to elucidate the metabolic regulation between ovoviviparity and oviparity in Artemia exposed to different salinities. At a salinity of 80 ppt, 100 % of females produced diapaused cysts, compared to 20 % at 50 ppt. Metabolic profiling revealed significant alterations in a range of metabolites, including 5,6-dihydrouracil, betaine, and malate, in females undergoing oviparity at 80 ppt compared to ovoviviparity at 30 ppt. Multivariate statistical analyses indicated clear separation between the two reproductive strategies. The up-regulated metabolites in oviparity were involved in significant metabolic pathways, such as β-alanine metabolism and the citrate cycle, highlighting substantial metabolic differences between the two reproductive strategies. These identified metabolic pathways might play crucial roles in the maternal response to high salinity, facilitating embryo protection and enhancing the survival and reproductive success of brine shrimp. These findings provide a basis for further research into the molecular mechanisms underlying Artemia adaptation to high salinity environments.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101409"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the mechanisms by which high salinity conditions stimulate adult Artemia females to produce diapaused cysts. We used a 1H NMR-based metabolomic approach to elucidate the metabolic regulation between ovoviviparity and oviparity in Artemia exposed to different salinities. At a salinity of 80 ppt, 100 % of females produced diapaused cysts, compared to 20 % at 50 ppt. Metabolic profiling revealed significant alterations in a range of metabolites, including 5,6-dihydrouracil, betaine, and malate, in females undergoing oviparity at 80 ppt compared to ovoviviparity at 30 ppt. Multivariate statistical analyses indicated clear separation between the two reproductive strategies. The up-regulated metabolites in oviparity were involved in significant metabolic pathways, such as β-alanine metabolism and the citrate cycle, highlighting substantial metabolic differences between the two reproductive strategies. These identified metabolic pathways might play crucial roles in the maternal response to high salinity, facilitating embryo protection and enhancing the survival and reproductive success of brine shrimp. These findings provide a basis for further research into the molecular mechanisms underlying Artemia adaptation to high salinity environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gill and brain transcriptomic analysis of mandarin fish(Siniperca chuatsi)reveals hypoxia-induced mitochondrial dysfunction and modulation of metabolism. Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens. 1H NMR-based metabolomic analysis of hypersalinity-induced oviparity in brine shrimp. Genome wide analysis of the sox32 gene in germline maintenance and differentiation in leopard coral grouper (Plectropomus leopardus). Exploring the gut microbiota and metabolome of Lateolabrax japonicus: A multi-omics approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1