Effect of several amines on the morphology, structure, purity, and photocatalytic activity of Ni6MnO8 nanostructures

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2025-01-07 DOI:10.1007/s13201-024-02347-4
Masoumeh Yaqoubi, Masoud Salavati-Niasari, Mojgan Ghanbari
{"title":"Effect of several amines on the morphology, structure, purity, and photocatalytic activity of Ni6MnO8 nanostructures","authors":"Masoumeh Yaqoubi,&nbsp;Masoud Salavati-Niasari,&nbsp;Mojgan Ghanbari","doi":"10.1007/s13201-024-02347-4","DOIUrl":null,"url":null,"abstract":"<div><p>Water and wastewater contaminated by dyes are becoming a bigger global problem. The drawbacks of conventional treatment methods are their high prices, lack of sustainability, and partial elimination. Metal oxide semiconductor-based photocatalytic degradation has lately supplanted these techniques. One method promising for completely degrading azo dyes found in wastewater is photocatalysis. Ni<sub>6</sub>MnO<sub>8</sub> nanostructures, a novel photocatalyst, were created in this study to aid in the photocatalytic breakdown of several dyes, especially Eriochrome Black T (EBT). These nanostructures were fabricated through a simple and low-cost co-precipitation method using different amines, including ammonia, tetraethylenepentamine, triethylenetetramine, and ethylenediamine (EDA) as precipitating and capping agents. The pure phase of Ni<sub>6</sub>MnO<sub>8</sub> was achieved in the presence of ammonia. According to the DRS result (bandgap = 2.6 eV), visible light was used to conduct photocatalytic degradation tests on a several dyes solution. The results show that the degradation is greatly influenced by the type of catalyst, dye solution’s starting concentration, pH of dye solution, and the amount of catalyst used. Increased catalyst dose and acidic media result in increased degradation. The maximum degradation rate of Ni<sub>6</sub>MnO<sub>8</sub> prepared in the presence of ammonia on EBT is 96.3% under visible light, and its pseudo-first-order reaction rate constant is 0.0182 min<sup>–1</sup>. The scavenger experiment revealed the hydroxyl radicals performed the superior role in the degradation of EBT. The recycling test indicated the high stability of Ni<sub>6</sub>MnO<sub>8</sub>, with the yield reduced by only 5.6% after five cycles.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02347-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02347-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water and wastewater contaminated by dyes are becoming a bigger global problem. The drawbacks of conventional treatment methods are their high prices, lack of sustainability, and partial elimination. Metal oxide semiconductor-based photocatalytic degradation has lately supplanted these techniques. One method promising for completely degrading azo dyes found in wastewater is photocatalysis. Ni6MnO8 nanostructures, a novel photocatalyst, were created in this study to aid in the photocatalytic breakdown of several dyes, especially Eriochrome Black T (EBT). These nanostructures were fabricated through a simple and low-cost co-precipitation method using different amines, including ammonia, tetraethylenepentamine, triethylenetetramine, and ethylenediamine (EDA) as precipitating and capping agents. The pure phase of Ni6MnO8 was achieved in the presence of ammonia. According to the DRS result (bandgap = 2.6 eV), visible light was used to conduct photocatalytic degradation tests on a several dyes solution. The results show that the degradation is greatly influenced by the type of catalyst, dye solution’s starting concentration, pH of dye solution, and the amount of catalyst used. Increased catalyst dose and acidic media result in increased degradation. The maximum degradation rate of Ni6MnO8 prepared in the presence of ammonia on EBT is 96.3% under visible light, and its pseudo-first-order reaction rate constant is 0.0182 min–1. The scavenger experiment revealed the hydroxyl radicals performed the superior role in the degradation of EBT. The recycling test indicated the high stability of Ni6MnO8, with the yield reduced by only 5.6% after five cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Effectively eliminating lead and cadmium from industrial wastewater using a biowaste-based sorbent Water quality and eutrophication status of the Zarivar Wetland (Iran) Visible light photocatalytic degradation of water-soluble organic pollutants in aqueous solution by thulium copper oxide nanostructures: sonochemical synthesis, characterization, optimization of conditions, and mechanisms Dynamic coupling of qualitative–quantitative models for operation of water resources based on environmental criteria Enhancing water productivity of solar still using thermal energy storage material and flat plate solar collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1