Aaliyah S. Tyson, Saif Khan, Zenia Motiwala, Gye Won Han, Zixin Zhang, Mohsen Ranjbar, Daniel Styrpejko, Nokomis Ramos-Gonzalez, Stone Woo, Kelly Villers, Delainey Landaker, Terry Kenakin, Ryan Shenvi, Susruta Majumdar, Cornelius Gati
{"title":"Molecular mechanisms of inverse agonism via κ-opioid receptor–G protein complexes","authors":"Aaliyah S. Tyson, Saif Khan, Zenia Motiwala, Gye Won Han, Zixin Zhang, Mohsen Ranjbar, Daniel Styrpejko, Nokomis Ramos-Gonzalez, Stone Woo, Kelly Villers, Delainey Landaker, Terry Kenakin, Ryan Shenvi, Susruta Majumdar, Cornelius Gati","doi":"10.1038/s41589-024-01812-0","DOIUrl":null,"url":null,"abstract":"<p>Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor–G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist. The pharmacological impact of agonist-free receptor–G protein complexes is poorly understood. Here we present biochemical evidence that certain κ-opioid receptor (KOR) inverse agonists can act via KOR–G<sub>i</sub> protein complexes. To investigate this phenomenon, we determined cryo-EM structures of KOR–G<sub>i</sub> protein complexes with three inverse agonists: JDTic, norBNI and GB18, corresponding to structures of inverse agonist-bound GPCR–G protein complexes. Remarkably, the orthosteric binding pocket resembles the G protein-free ‘inactive’ receptor conformation, while the receptor remains coupled to the G protein. In summary, our work challenges the canonical model of receptor antagonism and offers crucial insights into GPCR pharmacology.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"203 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01812-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor–G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist. The pharmacological impact of agonist-free receptor–G protein complexes is poorly understood. Here we present biochemical evidence that certain κ-opioid receptor (KOR) inverse agonists can act via KOR–Gi protein complexes. To investigate this phenomenon, we determined cryo-EM structures of KOR–Gi protein complexes with three inverse agonists: JDTic, norBNI and GB18, corresponding to structures of inverse agonist-bound GPCR–G protein complexes. Remarkably, the orthosteric binding pocket resembles the G protein-free ‘inactive’ receptor conformation, while the receptor remains coupled to the G protein. In summary, our work challenges the canonical model of receptor antagonism and offers crucial insights into GPCR pharmacology.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.