Rashid Khan, Chao Chen, Asim Zaman, Jiayi Wu, Haixing Mai, Liyilei Su, Yan Kang, Bingding Huang
{"title":"RenalSegNet: automated segmentation of renal tumor, veins, and arteries in contrast-enhanced CT scans","authors":"Rashid Khan, Chao Chen, Asim Zaman, Jiayi Wu, Haixing Mai, Liyilei Su, Yan Kang, Bingding Huang","doi":"10.1007/s40747-024-01751-2","DOIUrl":null,"url":null,"abstract":"<p>Renal carcinoma is a frequently seen cancer globally, with laparoscopic partial nephrectomy (LPN) being the primary form of treatment. Accurately identifying renal structures such as kidneys, tumors, veins, and arteries on CT scans is crucial for optimal surgical preparation and treatment. However, the automatic segmentation of these structures remains challenging due to the kidney's complex anatomy and the variability of imaging data. This study presents RenalSegNet, a novel deep-learning framework for automatically segmenting renal structure in contrast-enhanced CT images. RenalSegNet has an innovative encoder-decoder architecture, including the FlexEncoder Block for efficient multivariate feature extraction and the MedSegPath mechanism for advanced feature distribution and fusion. Evaluated on the KiPA dataset, RenalSegNet achieved remarkable performance, with an average dice score of 86.25%, IOU of 76.75%, Recall of 86.69%, Precision of 86.48%, HD of 15.78 mm, and AVD of 0.79 mm. Ablation studies confirm the critical roles of the MedSegPath and MedFuse components in achieving these results. RenalSegNet's robust performance highlights its potential for clinical applications and offers significant advances in renal cancer treatment by contributing to accurate preoperative planning and postoperative evaluation. Future improvements to model accuracy and applicability will involve integrating advanced techniques, such as unsupervised transformer-based approaches.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"15 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01751-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Renal carcinoma is a frequently seen cancer globally, with laparoscopic partial nephrectomy (LPN) being the primary form of treatment. Accurately identifying renal structures such as kidneys, tumors, veins, and arteries on CT scans is crucial for optimal surgical preparation and treatment. However, the automatic segmentation of these structures remains challenging due to the kidney's complex anatomy and the variability of imaging data. This study presents RenalSegNet, a novel deep-learning framework for automatically segmenting renal structure in contrast-enhanced CT images. RenalSegNet has an innovative encoder-decoder architecture, including the FlexEncoder Block for efficient multivariate feature extraction and the MedSegPath mechanism for advanced feature distribution and fusion. Evaluated on the KiPA dataset, RenalSegNet achieved remarkable performance, with an average dice score of 86.25%, IOU of 76.75%, Recall of 86.69%, Precision of 86.48%, HD of 15.78 mm, and AVD of 0.79 mm. Ablation studies confirm the critical roles of the MedSegPath and MedFuse components in achieving these results. RenalSegNet's robust performance highlights its potential for clinical applications and offers significant advances in renal cancer treatment by contributing to accurate preoperative planning and postoperative evaluation. Future improvements to model accuracy and applicability will involve integrating advanced techniques, such as unsupervised transformer-based approaches.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.