{"title":"Unveiling Mechanistic Origins of Enhanced Cycling Performance in Quasi-Solid-State Batteries with High-Concentration Electrolytes","authors":"Daeun Lee, Minjeong Shin","doi":"10.1021/acsenergylett.4c03122","DOIUrl":null,"url":null,"abstract":"All-solid-state lithium metal batteries are promising candidates for next-generation batteries. However, they face challenges due to poor interfacial properties between the solid electrolyte and electrode. In this study, to address these interfacial issues, a small amount of high-concentration liquid electrolyte (HCE), consisting of lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane, is incorporated between the solid electrolyte and Li metal to create a quasi-solid-state electrolyte (QSE) battery. Electrochemical measurements show that the QSE cell achieves a critical current density of ∼10 mA cm<sup>–</sup><sup>2</sup> and exhibits enhanced Li plating/stripping reversibility with uniform Li morphology. The mechanistic origins of this improved electrochemical performance of the QSE system were systematically investigated. We propose that HCE positively influences the interface by alleviating contact gaps and forming a LiF-rich inorganic solid electrolyte interface. Additionally, the QSE cell effectively mitigates contact loss from localized current and void formation, providing insights for designing favorable interfaces in solid-state battery systems.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"11 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03122","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium metal batteries are promising candidates for next-generation batteries. However, they face challenges due to poor interfacial properties between the solid electrolyte and electrode. In this study, to address these interfacial issues, a small amount of high-concentration liquid electrolyte (HCE), consisting of lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane, is incorporated between the solid electrolyte and Li metal to create a quasi-solid-state electrolyte (QSE) battery. Electrochemical measurements show that the QSE cell achieves a critical current density of ∼10 mA cm–2 and exhibits enhanced Li plating/stripping reversibility with uniform Li morphology. The mechanistic origins of this improved electrochemical performance of the QSE system were systematically investigated. We propose that HCE positively influences the interface by alleviating contact gaps and forming a LiF-rich inorganic solid electrolyte interface. Additionally, the QSE cell effectively mitigates contact loss from localized current and void formation, providing insights for designing favorable interfaces in solid-state battery systems.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.