{"title":"Gyroscopic gravitational memory from quasi-circular binary systems","authors":"Guillaume Faye and Ali Seraj","doi":"10.1088/1361-6382/ada339","DOIUrl":null,"url":null,"abstract":"Gravitational waves cause freely falling spinning objects to precess, resulting in a net orientation change called gyroscopic memory. In this paper, we will consider isolated gravitational sources in the post-Newtonian (PN) framework and compute the gyroscopic precession and memory at leading PN orders. We compare two competing contributions: the spin memory and the nonlinear helicity flux. At the level of the precession rate, the former is a 2PN oscillatory effect, while the latter is a 4PN adiabatic effect. However, the gyroscopic memory involves a time integration, which enhances subleading adiabatic effects by the fifth power of the velocity of light, leading to a 1.5PN memory effect. We explicitly compute the leading effects for a quasi-circular binary system and obtain the angular dependence of the memory on the celestial sphere.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"310 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ada339","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational waves cause freely falling spinning objects to precess, resulting in a net orientation change called gyroscopic memory. In this paper, we will consider isolated gravitational sources in the post-Newtonian (PN) framework and compute the gyroscopic precession and memory at leading PN orders. We compare two competing contributions: the spin memory and the nonlinear helicity flux. At the level of the precession rate, the former is a 2PN oscillatory effect, while the latter is a 4PN adiabatic effect. However, the gyroscopic memory involves a time integration, which enhances subleading adiabatic effects by the fifth power of the velocity of light, leading to a 1.5PN memory effect. We explicitly compute the leading effects for a quasi-circular binary system and obtain the angular dependence of the memory on the celestial sphere.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.