Lucas Pradeau-Phélut, Stacy Alvès, Léo Le Tareau, Cyann Larralde, Emma Bernard, Claire Schirmer, Josephine Lai-Kee-Him, Eléonore Lepvrier, Patrick Bron, Christian Delamarche, Cyrille Garnier
{"title":"Efficient Biochemical Method for Characterizing and Classifying Related Amyloidogenic Peptides","authors":"Lucas Pradeau-Phélut, Stacy Alvès, Léo Le Tareau, Cyann Larralde, Emma Bernard, Claire Schirmer, Josephine Lai-Kee-Him, Eléonore Lepvrier, Patrick Bron, Christian Delamarche, Cyrille Garnier","doi":"10.1021/acs.analchem.4c03325","DOIUrl":null,"url":null,"abstract":"Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies. In most cases, only a few dozen amino acids of the pathological protein are found in the final structure of the fibers, while amyloid peptides comprising five to 10 amino acids are involved in the fiber nucleation process. The identification and biochemical characterization of these peptides are therefore of major scientific and clinical importance. We demonstrated that in silico approaches are limited due to the peptides’ small size and long-distance intra- and intermolecular interactions that occur during nucleation. To address this problem, we developed a novel biochemical method for characterizing and classifying batches of related peptides. Initial work to optimize our approach is based on the reference peptide PHF6 (β1) from Microtubule-Associated Protein Tau (MAPT) as compared to 22 related peptides. Depending on their biochemical properties and using the Garnier–Delamarche plot we propose, we classified these peptides into three groups: aggregative, amyloid, and soluble (neither aggregative nor amyloid). We emphasize that our biochemical classification method is applicable to any family of peptides and could be scaled up for high-throughput analyses.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"43 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03325","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies. In most cases, only a few dozen amino acids of the pathological protein are found in the final structure of the fibers, while amyloid peptides comprising five to 10 amino acids are involved in the fiber nucleation process. The identification and biochemical characterization of these peptides are therefore of major scientific and clinical importance. We demonstrated that in silico approaches are limited due to the peptides’ small size and long-distance intra- and intermolecular interactions that occur during nucleation. To address this problem, we developed a novel biochemical method for characterizing and classifying batches of related peptides. Initial work to optimize our approach is based on the reference peptide PHF6 (β1) from Microtubule-Associated Protein Tau (MAPT) as compared to 22 related peptides. Depending on their biochemical properties and using the Garnier–Delamarche plot we propose, we classified these peptides into three groups: aggregative, amyloid, and soluble (neither aggregative nor amyloid). We emphasize that our biochemical classification method is applicable to any family of peptides and could be scaled up for high-throughput analyses.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.