Highly selective deep eutectic solvents for the recovery of lithium from high sodium concentration aqueous solutions

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2025-01-07 DOI:10.1002/aic.18679
Ke Xue, Hai Liu, Peng Kou, Yan Zhou, Yan Zhang, Zhaoyou Zhu, Jianguang Qi, Yinglong Wang
{"title":"Highly selective deep eutectic solvents for the recovery of lithium from high sodium concentration aqueous solutions","authors":"Ke Xue, Hai Liu, Peng Kou, Yan Zhou, Yan Zhang, Zhaoyou Zhu, Jianguang Qi, Yinglong Wang","doi":"10.1002/aic.18679","DOIUrl":null,"url":null,"abstract":"Efficient and selective extraction of lithium from sodium-rich systems is crucial for meeting the growing demand for lithium and achieving green development goals. In this study, we synthesized three hydrophobic deep eutectic solvents (HDES) using trioctylphosphine oxide and <i>β</i>-diketones for the separation of alkali metal ions. Experimental results indicated that the chosen extractants exhibit excellent Li<sup>+</sup> extraction capability under alkaline conditions, and the extraction capacity of HDES for Li<sup>+</sup> is superior to that of their components. Thermodynamic function calculations revealed that the Li<sup>+</sup> extraction reaction is exothermic. A study of the factors affecting Li<sup>+</sup> extraction efficiency and separation coefficients, and the recyclability of HDES, was conducted, achieving efficient recovery of lithium from solutions. Additionally, Fourier-transform infrared spectroscopy analysis and quantum chemical calculations elucidated the extraction mechanism. This study aims to provide a theoretical basis and a green approach for the selective recovery of Li<sup>+</sup> from high Na/Li aqueous solutions.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18679","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and selective extraction of lithium from sodium-rich systems is crucial for meeting the growing demand for lithium and achieving green development goals. In this study, we synthesized three hydrophobic deep eutectic solvents (HDES) using trioctylphosphine oxide and β-diketones for the separation of alkali metal ions. Experimental results indicated that the chosen extractants exhibit excellent Li+ extraction capability under alkaline conditions, and the extraction capacity of HDES for Li+ is superior to that of their components. Thermodynamic function calculations revealed that the Li+ extraction reaction is exothermic. A study of the factors affecting Li+ extraction efficiency and separation coefficients, and the recyclability of HDES, was conducted, achieving efficient recovery of lithium from solutions. Additionally, Fourier-transform infrared spectroscopy analysis and quantum chemical calculations elucidated the extraction mechanism. This study aims to provide a theoretical basis and a green approach for the selective recovery of Li+ from high Na/Li aqueous solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从高钠浓度水溶液中回收锂的高选择性深共晶溶剂
从富钠系统中高效、选择性地提取锂对于满足日益增长的锂需求和实现绿色发展目标至关重要。在本研究中,我们用氧化三辛基膦和β-二酮合成了三种疏水深共晶溶剂(HDES),用于碱金属离子的分离。实验结果表明,所选择的萃取剂在碱性条件下具有良好的Li+萃取能力,HDES对Li+的萃取能力优于其组份。热力学函数计算表明,Li+萃取反应为放热反应。研究了影响锂离子萃取效率、分离系数以及HDES可回收性的因素,实现了溶液中锂的高效回收。此外,傅里叶变换红外光谱分析和量子化学计算阐明了萃取机理。本研究旨在为从高Na/Li水溶液中选择性回收Li+提供理论依据和绿色途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Analysis of steric hindrance in the separation of ethanol–methyl acetate azeotropic mixture using deep eutectic solvents Hydrodynamics and mass transfer characteristics of a single microbubble in liquids with different properties Highly efficient and mild synthesis of multimetallic metal–organic framework nanoparticles for enhanced oxygen evolution reactions Microbubble swarm in a HiGee-aided bubble column reactor: Size, gas holdup, and effective interfacial area Rigid and flexible coupled micropore membranes enabling ultra-efficient anion separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1