Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone promote antiviral immune response by activating NF-ĸB

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-08 DOI:10.1038/s41467-024-54882-y
Peili Hou, Hongchao Zhu, Fengyun Chu, Yan Gao, Xiaonan Sun, Fuzhen Zhang, Xiaomeng Wang, Yueyue Feng, Xingyu Li, Yu Liu, Jun Wang, Xiaoyun Wang, Daniel Chang He, Hongmei Wang, Hongbin He
{"title":"Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone promote antiviral immune response by activating NF-ĸB","authors":"Peili Hou, Hongchao Zhu, Fengyun Chu, Yan Gao, Xiaonan Sun, Fuzhen Zhang, Xiaomeng Wang, Yueyue Feng, Xingyu Li, Yu Liu, Jun Wang, Xiaoyun Wang, Daniel Chang He, Hongmei Wang, Hongbin He","doi":"10.1038/s41467-024-54882-y","DOIUrl":null,"url":null,"abstract":"<p>Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice. Mechanistically, PBLD activates NF-κB signaling pathway during viral infection via blocking tripartite motif containing 21 (TRIM21)-mediated phosphorylated inhibitory kappa B kinase beta (IKKβ) degradation. Furthermore, we show Cedrelone inhibits viral replication by increasing the PBLD protein expression and subsequently activating NF-κB-mediated IFN-I response. Furthermore, the therapeutic potential of Cedrelone lies in its ability to enhance antiviral immunity in primary macrophages and to promote survival and reduce lung tissue damage in HSV-1-infected mice in a PBLD-dependent manner. Consequently, our findings provide a potential combination model that targets PBLD for Cedrelone antiviral drug therapy, potentially paving the way for the development of broad-spectrum antiviral agents.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"35 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54882-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice. Mechanistically, PBLD activates NF-κB signaling pathway during viral infection via blocking tripartite motif containing 21 (TRIM21)-mediated phosphorylated inhibitory kappa B kinase beta (IKKβ) degradation. Furthermore, we show Cedrelone inhibits viral replication by increasing the PBLD protein expression and subsequently activating NF-κB-mediated IFN-I response. Furthermore, the therapeutic potential of Cedrelone lies in its ability to enhance antiviral immunity in primary macrophages and to promote survival and reduce lung tissue damage in HSV-1-infected mice in a PBLD-dependent manner. Consequently, our findings provide a potential combination model that targets PBLD for Cedrelone antiviral drug therapy, potentially paving the way for the development of broad-spectrum antiviral agents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非那嗪类生物合成样结构域含蛋白(PBLD)和赛德龙通过激活NF促进抗病毒免疫反应-ĸB
Phenazine生物合成样结构域蛋白(PBLD)和Cedrelone已被确定为肿瘤抑制因子。然而,它们在病毒感染中的作用尚不清楚。在这里,我们证明了PBLD通过激活NF-κB (NF-κB)信号通路上调I型干扰素(IFN-I)应答,从而抵抗细胞和小鼠的病毒感染。在机制上,PBLD通过阻断含有21 (TRIM21)介导的磷酸化抑制性kappa B激酶β (IKKβ)降解的三方基序来激活病毒感染过程中的NF-κB信号通路。此外,我们发现Cedrelone通过增加PBLD蛋白表达并随后激活NF-κ b介导的IFN-I反应来抑制病毒复制。此外,Cedrelone的治疗潜力在于它能够增强原代巨噬细胞的抗病毒免疫,并以pbld依赖的方式促进hsv -1感染小鼠的存活和减少肺组织损伤。因此,我们的研究结果提供了一个潜在的联合模型,以PBLD为靶点进行塞德龙抗病毒药物治疗,可能为开发广谱抗病毒药物铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
puromycin
索莱宝
mouse IFN-α
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Photoelectrochemical water splitting cells at elevated pressure using BiVO4 and platinized III-V semiconductor photoelectrodes. Ethylene promotes branch formation but inhibits tendril development in cucumber. Sequestration of the phagocyte metabolite itaconate by Pseudomonas aeruginosa RpoN promotes successful pulmonary infection. Protonation pathway for CO2 reduction mediated by coordinated H2O on active sites. USP29 and SMURF1 orchestrate FSP1-mediated ferroptosis suppression to facilitate chemoresistance in gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1