Ultra-light antennas via charge programmed deposition additive manufacturing

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-08 DOI:10.1038/s41467-024-53513-w
Zhen Wang, Ryan Hensleigh, Zhenpeng Xu, Junbo Wang, James JuYoung Park, Anastasios Papathanasopoulos, Yahya Rahmat-Samii, Xiaoyu (Rayne) Zheng
{"title":"Ultra-light antennas via charge programmed deposition additive manufacturing","authors":"Zhen Wang, Ryan Hensleigh, Zhenpeng Xu, Junbo Wang, James JuYoung Park, Anastasios Papathanasopoulos, Yahya Rahmat-Samii, Xiaoyu (Rayne) Zheng","doi":"10.1038/s41467-024-53513-w","DOIUrl":null,"url":null,"abstract":"<p>The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes. Demonstrating its potential, we present a transmitarray antenna composed of an interconnected, multi-layered array of dielectric/conductive S-ring unit cells, reducing 94% mass of conventional antenna configurations. A fully printed circular polarized transmitarray system fed by a source and a Risley prism antenna system operating at 19 GHz both show close alignment between testing results and numerical simulations. This printing method establishes a universal platform, propelling discovery of new antenna designs and enabling data-driven design and optimizations where rapid production of antenna designs is crucial.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"46 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53513-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes. Demonstrating its potential, we present a transmitarray antenna composed of an interconnected, multi-layered array of dielectric/conductive S-ring unit cells, reducing 94% mass of conventional antenna configurations. A fully printed circular polarized transmitarray system fed by a source and a Risley prism antenna system operating at 19 GHz both show close alignment between testing results and numerical simulations. This printing method establishes a universal platform, propelling discovery of new antenna designs and enabling data-driven design and optimizations where rapid production of antenna designs is crucial.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电荷编程沉积增材制造的超轻天线
5g / 6g通信、可穿戴设备和航空航天应用对轻型天线的需求正在迅速增长。然而,标准制造技术在结构复杂性和多材料类别易于集成方面受到限制。在这里,我们介绍电荷编程多材料增材制造平台,提供无与伦比的天线设计灵活性和快速打印复杂天线结构的能力,这是前所未有的或需要一系列的制造路线。为了证明其潜力,我们提出了一种由相互连接的多层介质/导电s环单元单元阵列组成的发射阵列天线,将传统天线配置的质量减少了94%。采用源馈电的全印刷圆形极化发射阵列系统和工作频率为19ghz的Risley棱镜天线系统均显示出测试结果与数值模拟结果的一致性。这种打印方法建立了一个通用平台,推动了新天线设计的发现,并使数据驱动的设计和优化成为可能,其中天线设计的快速生产至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Temperature seasonality regulates organic carbon burial in lake Single soliton microcomb combined with optical phased array for parallel FMCW LiDAR Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel Composition and liquid-to-solid maturation of protein aggregates contribute to bacterial dormancy development and recovery Sensitive dependence of pairing symmetry on Ni-eg crystal field splitting in the nickelate superconductor La3Ni2O7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1