Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-01-08 DOI:10.1021/acs.nanolett.4c05647
Bin Feng, Shixuan Zhao, Ilya Razdolski, Feihong Liu, Zhiwei Peng, Yaorong Wang, Zhedong Zhang, Zhenhua Ni, Jianbin Xu, Dangyuan Lei
{"title":"Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures","authors":"Bin Feng, Shixuan Zhao, Ilya Razdolski, Feihong Liu, Zhiwei Peng, Yaorong Wang, Zhedong Zhang, Zhenhua Ni, Jianbin Xu, Dangyuan Lei","doi":"10.1021/acs.nanolett.4c05647","DOIUrl":null,"url":null,"abstract":"The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS<sub>2</sub>/WS<sub>2</sub> heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude. We further study the interplay of this Purcell enhancement and phonon assistance in 30°- and 0°-twisted heterostructures. Temperature-dependent and time-resolved spectroscopy reveal that the IE enhancement in 30°-twisted cases involves competition between IEs and intralayer excitonic emission, which is remarkably distinct from the 0°-twisted cases. We propose a comprehensive exciton decay model capturing the features of the phonon-assisted momentum compensation and the Purcell enhancement of the IE emission, showing consistency with the experimental measurements. Our results enrich the understanding of the nanocavity-assisted light–matter interaction for momentum-indirect excitonic transitions.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"5 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05647","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS2/WS2 heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude. We further study the interplay of this Purcell enhancement and phonon assistance in 30°- and 0°-twisted heterostructures. Temperature-dependent and time-resolved spectroscopy reveal that the IE enhancement in 30°-twisted cases involves competition between IEs and intralayer excitonic emission, which is remarkably distinct from the 0°-twisted cases. We propose a comprehensive exciton decay model capturing the features of the phonon-assisted momentum compensation and the Purcell enhancement of the IE emission, showing consistency with the experimental measurements. Our results enrich the understanding of the nanocavity-assisted light–matter interaction for momentum-indirect excitonic transitions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米腔耦合扭曲范德华异质结构中动量禁止层间激子的室温强发射
扭曲二维异质结构层间激子(IEs)的发射效率长期存在动量失配问题,限制了其在超紧凑激子器件中的应用。在这里,我们报道了30°扭曲的MoS2/WS2异质层中强烈的室温禁动量IE发射。利用等离子体纳米腔,珀塞尔效应将腔内的IE发射强度提高了2个数量级以上。我们进一步研究了珀塞尔增强和声子辅助在30°和0°扭曲异质结构中的相互作用。温度依赖光谱和时间分辨光谱表明,30°扭转情况下的IE增强涉及IE和层内激子发射之间的竞争,这与0°扭转情况明显不同。我们提出了一个综合的激子衰变模型,该模型捕捉了声子辅助动量补偿和IE发射的Purcell增强的特征,显示了与实验测量的一致性。我们的研究结果丰富了对纳米腔辅助光-物质相互作用在动量间接激子跃迁中的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Fluorinated Cyclodextrin Supramolecular Nanoassembly Enables Oxygen-Enriched and Targeted Photodynamic Therapy Accelerated Hydrogel Strengthening: Synergy between Mechanical Training and Lignin Intake Modifying the Dzyaloshinskii–Moriya Interaction via Disruption of Ordered Intercalation in a van der Waals Magnet Observation of Anomalous Hall Effect in Collinear Antiferromagnet IrMn Tunable Integrin–Ligand Coupling Strength Modulates Cellular Adaptive Mechanosensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1