A swarm of dusty objects in orbit around the central star of planetary nebula WeSb 1

IF 14.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Nature Astronomy Pub Date : 2025-01-08 DOI:10.1038/s41550-024-02446-x
Jan Budaj, Klaus Bernhard, David Jones, James Munday
{"title":"A swarm of dusty objects in orbit around the central star of planetary nebula WeSb 1","authors":"Jan Budaj, Klaus Bernhard, David Jones, James Munday","doi":"10.1038/s41550-024-02446-x","DOIUrl":null,"url":null,"abstract":"Exoplanets and smaller bodies have been detected orbiting different kind of stars. However, we do not know of any such objects in planetary nebulae, the short-lived stage of stellar evolution between the asymptotic giant branch and white dwarf phases. The planetary activity (destruction and formation) may be accompanied by dust clouds. Hence, we searched for dust occultation events in planetary nebulae using archival photometric data. We show that the central star of PN WeSb 1 features numerous dimming events with typical durations of a few days to weeks that are up to 3 mag deep. This variability is mainly stochastic with an indication of a 400 d period. The occultations are almost grey, indicating dust grains larger than about 0.1 μm. Based on our follow-up observations, we argue that the central star is a wide binary and that these events are most probably caused by debris from disintegrated small rocky bodies that escaped from the former asymptotic giant branch star to find safe harbour around the companion star. The latter star dominates the optical spectrum enabling us to see the eclipses. This means that planetary systems are present and undergo violent evolution during the planetary nebula stage. Numerous eclipses have been observed towards the binary central star of planetary nebula WeSb 1, probably caused by debris from disintegrated rocky bodies. This finding suggests that planetary systems undergo a violent evolution during the planetary nebula stage.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 3","pages":"380-392"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02446-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Exoplanets and smaller bodies have been detected orbiting different kind of stars. However, we do not know of any such objects in planetary nebulae, the short-lived stage of stellar evolution between the asymptotic giant branch and white dwarf phases. The planetary activity (destruction and formation) may be accompanied by dust clouds. Hence, we searched for dust occultation events in planetary nebulae using archival photometric data. We show that the central star of PN WeSb 1 features numerous dimming events with typical durations of a few days to weeks that are up to 3 mag deep. This variability is mainly stochastic with an indication of a 400 d period. The occultations are almost grey, indicating dust grains larger than about 0.1 μm. Based on our follow-up observations, we argue that the central star is a wide binary and that these events are most probably caused by debris from disintegrated small rocky bodies that escaped from the former asymptotic giant branch star to find safe harbour around the companion star. The latter star dominates the optical spectrum enabling us to see the eclipses. This means that planetary systems are present and undergo violent evolution during the planetary nebula stage. Numerous eclipses have been observed towards the binary central star of planetary nebula WeSb 1, probably caused by debris from disintegrated rocky bodies. This finding suggests that planetary systems undergo a violent evolution during the planetary nebula stage.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星状星云WeSb 1中心恒星周围轨道上的一群尘埃物体
系外行星和更小的天体已经被探测到围绕不同类型的恒星运行。然而,我们还不知道在行星状星云中有任何这样的天体,行星状星云是恒星演化的短暂阶段,介于渐近巨星分支和白矮星阶段之间。行星的活动(毁灭和形成)可能伴随着尘埃云。因此,我们利用档案光度数据搜索行星状星云中的尘埃掩星事件。我们显示PN WeSb 1的中心恒星具有许多持续数天至数周的典型变暗事件,其深度可达3等。这种变率主要是随机的,有400 d周期的迹象。掩星几乎是灰色的,表明尘埃颗粒大于0.1 μm。根据我们的后续观测,我们认为中央恒星是一个宽双星,这些事件很可能是由分裂的小岩石体的碎片引起的,这些小岩石体从前渐近的巨大分支恒星中逃脱出来,在伴星周围找到了安全的港湾。后一颗恒星支配着光谱,使我们能够看到日食。这意味着行星系统在行星状星云阶段存在并经历剧烈的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
期刊最新文献
Europa’s ice thickness and subsurface structure characterized by the Juno microwave radiometer Drawing on the full diversity of mind Neurodivergent in astronomy: the early-career researcher edition Neurodivergent in astronomy: the advanced-career researcher edition Challenges in the detection of gases in exoplanet atmospheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1