{"title":"Accuracy Can Lie: On the Impact of Surrogate Model in Configuration Tuning","authors":"Pengzhou Chen;Jingzhi Gong;Tao Chen","doi":"10.1109/TSE.2025.3525955","DOIUrl":null,"url":null,"abstract":"To ease the expensive measurements during configuration tuning, it is natural to build a surrogate model as the replacement of the system, and thereby the configuration performance can be cheaply evaluated. Yet, a stereotype therein is that the higher the model accuracy, the better the tuning result would be, or vice versa. This “accuracy is all” belief drives our research community to build more and more accurate models and criticize a tuner for the inaccuracy of the model used. However, this practice raises some previously unaddressed questions, e.g., are the model and its accuracy really that important for the tuning result? Do those somewhat small accuracy improvements reported (e.g., a few % error reduction) in existing work really matter much to the tuners? What role does model accuracy play in the impact of tuning quality? To answer those related questions, in this paper, we conduct one of the largest-scale empirical studies to date—running over the period of 13 months <inline-formula><tex-math>$24\\times 7$</tex-math></inline-formula>—that covers 10 models, 17 tuners, and 29 systems from the existing works while under four different commonly used metrics, leading to 13,612 cases of investigation. Surprisingly, our key findings reveal that the accuracy can lie: there are a considerable number of cases where higher accuracy actually leads to no improvement in the tuning outcomes (up to 58% cases under certain setting), or even worse, it can degrade the tuning quality (up to 24% cases under certain setting). We also discover that the chosen models in most proposed tuners are sub-optimal and that the required % of accuracy change to significantly improve tuning quality varies according to the range of model accuracy. Deriving from the fitness landscape analysis, we provide in-depth discussions of the rationale behind, offering several lessons learned as well as insights for future opportunities. Most importantly, this work poses a clear message to the community: we should take one step back from the natural “accuracy is all” belief for model-based configuration tuning.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 2","pages":"548-580"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10832565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10832565/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To ease the expensive measurements during configuration tuning, it is natural to build a surrogate model as the replacement of the system, and thereby the configuration performance can be cheaply evaluated. Yet, a stereotype therein is that the higher the model accuracy, the better the tuning result would be, or vice versa. This “accuracy is all” belief drives our research community to build more and more accurate models and criticize a tuner for the inaccuracy of the model used. However, this practice raises some previously unaddressed questions, e.g., are the model and its accuracy really that important for the tuning result? Do those somewhat small accuracy improvements reported (e.g., a few % error reduction) in existing work really matter much to the tuners? What role does model accuracy play in the impact of tuning quality? To answer those related questions, in this paper, we conduct one of the largest-scale empirical studies to date—running over the period of 13 months $24\times 7$—that covers 10 models, 17 tuners, and 29 systems from the existing works while under four different commonly used metrics, leading to 13,612 cases of investigation. Surprisingly, our key findings reveal that the accuracy can lie: there are a considerable number of cases where higher accuracy actually leads to no improvement in the tuning outcomes (up to 58% cases under certain setting), or even worse, it can degrade the tuning quality (up to 24% cases under certain setting). We also discover that the chosen models in most proposed tuners are sub-optimal and that the required % of accuracy change to significantly improve tuning quality varies according to the range of model accuracy. Deriving from the fitness landscape analysis, we provide in-depth discussions of the rationale behind, offering several lessons learned as well as insights for future opportunities. Most importantly, this work poses a clear message to the community: we should take one step back from the natural “accuracy is all” belief for model-based configuration tuning.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.