Population-level amplification of gene regulation by programmable gene transfer

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2025-01-08 DOI:10.1038/s41589-024-01817-9
Hye-In Son, Grayson S. Hamrick, Ashwini R. Shende, Kyeri Kim, Kaichun Yang, Tony Jun Huang, Lingchong You
{"title":"Population-level amplification of gene regulation by programmable gene transfer","authors":"Hye-In Son, Grayson S. Hamrick, Ashwini R. Shende, Kyeri Kim, Kaichun Yang, Tony Jun Huang, Lingchong You","doi":"10.1038/s41589-024-01817-9","DOIUrl":null,"url":null,"abstract":"<p>Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation. This approach expands the dynamic range of gene expression and allows orthogonal control across populations. Our platform offers a versatile strategy for dynamically regulating gene expression in engineered microbial communities.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"100 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01817-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation. This approach expands the dynamic range of gene expression and allows orthogonal control across populations. Our platform offers a versatile strategy for dynamically regulating gene expression in engineered microbial communities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可编程基因转移在群体水平上的基因调控扩增
工程细胞对环境信号的感知和反应通常集中在单细胞水平上最大化基因调控。受群体水平控制机制(如免疫反应)的启发,我们展示了利用可编程质粒介导的基因转移在细菌群体中动态控制和扩增基因调控。通过调节质粒损失率、转移率和通过Cas9内切酶、F偶联机制和抗生素选择的适应度效应,我们调节了质粒携带细胞的比例,作为单细胞水平调控的放大因子。这种方法扩大了基因表达的动态范围,并允许跨种群的正交控制。我们的平台为动态调节工程微生物群落中的基因表达提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
Rolling toward circular solutions TRIMming the nuclear pore An influenza mutation switch Hashing the message with cells Continuous selection in E. coli to identify cyclic peptide inhibitors of protein aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1