Image Quality Assessment: Exploring Joint Degradation Effect of Deep Network Features via Kernel Representation Similarity Analysis

Xingran Liao;Xuekai Wei;Mingliang Zhou;Hau-San Wong;Sam Kwong
{"title":"Image Quality Assessment: Exploring Joint Degradation Effect of Deep Network Features via Kernel Representation Similarity Analysis","authors":"Xingran Liao;Xuekai Wei;Mingliang Zhou;Hau-San Wong;Sam Kwong","doi":"10.1109/TPAMI.2025.3527004","DOIUrl":null,"url":null,"abstract":"Typically, deep network-based full-reference image quality assessment (FR-IQA) models compare deep features from reference and distorted images pairwise, overlooking correlations among features from the same source. We propose a dual-branch framework to capture the joint degradation effect among deep network features. The first branch uses kernel representation similarity analysis (KRSA), which compares feature self-similarity matrices via the mean absolute error (MAE). The second branch conducts pairwise comparisons via the MAE, and a training-free logarithmic summation of both branches derives the final score. Our approach contributes in three ways. First, integrating the KRSA with pairwise comparisons enhances the model’s perceptual awareness. Second, our approach is adaptable to diverse network architectures. Third, our approach can guide perceptual image enhancement. Extensive experiments on 10 datasets validate our method’s efficacy, demonstrating that perceptual deformation widely exists in diverse IQA scenarios and that measuring the joint degradation effect can discern appealing content deformations.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2799-2815"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10833846/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Typically, deep network-based full-reference image quality assessment (FR-IQA) models compare deep features from reference and distorted images pairwise, overlooking correlations among features from the same source. We propose a dual-branch framework to capture the joint degradation effect among deep network features. The first branch uses kernel representation similarity analysis (KRSA), which compares feature self-similarity matrices via the mean absolute error (MAE). The second branch conducts pairwise comparisons via the MAE, and a training-free logarithmic summation of both branches derives the final score. Our approach contributes in three ways. First, integrating the KRSA with pairwise comparisons enhances the model’s perceptual awareness. Second, our approach is adaptable to diverse network architectures. Third, our approach can guide perceptual image enhancement. Extensive experiments on 10 datasets validate our method’s efficacy, demonstrating that perceptual deformation widely exists in diverse IQA scenarios and that measuring the joint degradation effect can discern appealing content deformations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像质量评估:通过核表示相似度分析探索深度网络特征的联合退化效应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1