Decanoylcarnitine improves liver mitochondrial dysfunction in hepatitis B virus infection by enhancing fatty acid β-oxidation

Ye Sun, Qingling Chen, Yuxiao Liu, Mengfan Jiao, Zixing Dai, Xiaoxue Hou, Rui Liu, Yuwen Li, Chuanlong Zhu
{"title":"Decanoylcarnitine improves liver mitochondrial dysfunction in hepatitis B virus infection by enhancing fatty acid β-oxidation","authors":"Ye Sun, Qingling Chen, Yuxiao Liu, Mengfan Jiao, Zixing Dai, Xiaoxue Hou, Rui Liu, Yuwen Li, Chuanlong Zhu","doi":"10.1093/infdis/jiaf014","DOIUrl":null,"url":null,"abstract":"Background The incidence of metabolic-associated steatotic liver disease in patients with chronic hepatitis B is increasing annually; however, the interaction between hepatitis B virus (HBV) infection and lipid metabolism remains unclear. This study attempted to clarify whether fatty acid metabolism regulation could alleviate mitochondrial dysfunction caused by HBV infection. Methods Public gene set of human livers was analyzed, and a proteomic analysis on mouse livers was conducted to explore metabolic disorders and affected organelles associated with HBV infection. The effect of decanoylcarnitine on fatty acid β-oxidation and mitochondria was investigated in vivo and in vitro. The pathways involved were shown by proteomic analysis and confirmed by Western blot. Results HBV infection could cause fatty acid β-oxidation disorder and mitochondrial dysfunction in vivo and in vitro. CPT1A overexpression could improve mitochondrial function in hepatocytes. Furthermore, decanoylcarnitine supplementation could activate CPT1A expression, thus improving fatty acid metabolism and repairing mitochondrial dysfunction. Proteomic analysis of mouse livers suggests that decanoylcarnitine stimulates the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and the PPARα was the most important among PPARs. Conclusions Impaired fatty acid metabolism and mitochondrial dysfunction in hepatocytes caused by HBV infection could be partially restored by exogenous supplementation of decanoylcarnitine. It elucidated the therapeutic potential of decanoylcarnitine in HBV infection and provided a new approach for diseases related to mitochondrial dysfunction.","PeriodicalId":501010,"journal":{"name":"The Journal of Infectious Diseases","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiaf014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background The incidence of metabolic-associated steatotic liver disease in patients with chronic hepatitis B is increasing annually; however, the interaction between hepatitis B virus (HBV) infection and lipid metabolism remains unclear. This study attempted to clarify whether fatty acid metabolism regulation could alleviate mitochondrial dysfunction caused by HBV infection. Methods Public gene set of human livers was analyzed, and a proteomic analysis on mouse livers was conducted to explore metabolic disorders and affected organelles associated with HBV infection. The effect of decanoylcarnitine on fatty acid β-oxidation and mitochondria was investigated in vivo and in vitro. The pathways involved were shown by proteomic analysis and confirmed by Western blot. Results HBV infection could cause fatty acid β-oxidation disorder and mitochondrial dysfunction in vivo and in vitro. CPT1A overexpression could improve mitochondrial function in hepatocytes. Furthermore, decanoylcarnitine supplementation could activate CPT1A expression, thus improving fatty acid metabolism and repairing mitochondrial dysfunction. Proteomic analysis of mouse livers suggests that decanoylcarnitine stimulates the peroxisome proliferator-activated receptor (PPAR) signaling pathway, and the PPARα was the most important among PPARs. Conclusions Impaired fatty acid metabolism and mitochondrial dysfunction in hepatocytes caused by HBV infection could be partially restored by exogenous supplementation of decanoylcarnitine. It elucidated the therapeutic potential of decanoylcarnitine in HBV infection and provided a new approach for diseases related to mitochondrial dysfunction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Outbreak of Rotavirus Diarrheal Infection among Adults in King County, Washington, January-June 2023 Enhanced Killing of Methicillin-Resistant Staphylococcus aureus with Ceftaroline or Vancomycin in Combination with Carbapenems Emergence of ceftriaxone-resistant Neisseria gonorrhoeae through horizontal gene transfer among Neisseria spp CCL17 influences Borrelia burgdorferi infection in the heart Decanoylcarnitine improves liver mitochondrial dysfunction in hepatitis B virus infection by enhancing fatty acid β-oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1