Kun Hu, Yunpeng Yao, Zongli Hu, Lipengan Ye, Bin Tang, Wei Su
{"title":"Design of graphene-based chiral trifunctional tunable terahertz metasurface","authors":"Kun Hu, Yunpeng Yao, Zongli Hu, Lipengan Ye, Bin Tang, Wei Su","doi":"10.1039/d4cp04423a","DOIUrl":null,"url":null,"abstract":"Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroicity as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs. When circularly polarized light is incident, the metasurface exhibits broadband circular dichroism (CD) function, generating CD intensities greater than 0.5 at 3.44-6.0 THz, and polarization switching function at 3.43-6.17 THz. When linearly polarized light is incident, the proposed design exhibits a broadband linear dichroism (LD) function, producing LD intensities greater than 0.5 at 2.25-5.65 THz and a polarization conversion function at 3.32-6.05 THz. Its broad bandwidth ensures that each function is competitive and effective. A noteworthy feature is the capability to adjust the graphene's chemical potential and the state of the incident light to finely calibrate the intensity of each functional aspect. This innovation makes the proposed multifunctional metasurface a significant reference for the development of chiral photodetectors, CD supermirrors, smart switches, and polarization digital imaging systems within the THz range.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"66 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04423a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroicity as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs. When circularly polarized light is incident, the metasurface exhibits broadband circular dichroism (CD) function, generating CD intensities greater than 0.5 at 3.44-6.0 THz, and polarization switching function at 3.43-6.17 THz. When linearly polarized light is incident, the proposed design exhibits a broadband linear dichroism (LD) function, producing LD intensities greater than 0.5 at 2.25-5.65 THz and a polarization conversion function at 3.32-6.05 THz. Its broad bandwidth ensures that each function is competitive and effective. A noteworthy feature is the capability to adjust the graphene's chemical potential and the state of the incident light to finely calibrate the intensity of each functional aspect. This innovation makes the proposed multifunctional metasurface a significant reference for the development of chiral photodetectors, CD supermirrors, smart switches, and polarization digital imaging systems within the THz range.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.