Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson’s disease model triggered by α-synuclein overexpression

IF 6.7 1区 医学 Q1 NEUROSCIENCES NPJ Parkinson's Disease Pub Date : 2025-01-09 DOI:10.1038/s41531-024-00846-4
Zhen Zhang, Kun Niu, Taoying Huang, Jiali Guo, Gongbikai Xarbat, Xiaoli Gong, Yunke Gao, Feiyang Liu, Shan Cheng, Wenting Su, Fei Yang, Zhaoyuan Liu, Florent Ginhoux, Ting Zhang
{"title":"Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson’s disease model triggered by α-synuclein overexpression","authors":"Zhen Zhang, Kun Niu, Taoying Huang, Jiali Guo, Gongbikai Xarbat, Xiaoli Gong, Yunke Gao, Feiyang Liu, Shan Cheng, Wenting Su, Fei Yang, Zhaoyuan Liu, Florent Ginhoux, Ting Zhang","doi":"10.1038/s41531-024-00846-4","DOIUrl":null,"url":null,"abstract":"<p>Chronic neuroinflammation with sustained microglial activation occurs in Parkinson’s disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia. This chronic treatment paradigm prevented the development of motor deficits and concomitantly preserved dopaminergic neuron cell and weakened α-synuclein phosphorylation. Gene expression profiles related to extracellular matrix (ECM) remodeling were increased after microglia depletion in PD mice, which were further validated on protein level. We demonstrated that microglia exert adverse effects during α-synuclein-overexpression-induced neuronal lesion formation, and their depletion remodels ECM and aids recovery following insult.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"66 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00846-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic neuroinflammation with sustained microglial activation occurs in Parkinson’s disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia. This chronic treatment paradigm prevented the development of motor deficits and concomitantly preserved dopaminergic neuron cell and weakened α-synuclein phosphorylation. Gene expression profiles related to extracellular matrix (ECM) remodeling were increased after microglia depletion in PD mice, which were further validated on protein level. We demonstrated that microglia exert adverse effects during α-synuclein-overexpression-induced neuronal lesion formation, and their depletion remodels ECM and aids recovery following insult.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在α-突触核蛋白过度表达引发的小鼠帕金森病模型中,小胶质细胞缺失可减少神经变性并重塑细胞外基质
慢性神经炎症伴持续的小胶质细胞激活发生在帕金森病(PD)中,然而这些细胞对神经退行性变的机制和确切贡献仍然知之甚少。在本研究中,我们通过注射rAAV-hSYN诱导小鼠进行性多巴胺能神经元丢失,引起α-突触核蛋白的神经元表达,导致神经炎症和行为改变。我们在rAAV-hSYN注射前给药PLX5622(一种集落刺激因子1受体抑制剂)3周,维持8周以消除小胶质细胞。这种慢性治疗模式阻止了运动障碍的发展,同时保留了多巴胺能神经元细胞,削弱了α-突触核蛋白的磷酸化。PD小鼠小胶质细胞缺失后,与细胞外基质(ECM)重塑相关的基因表达谱增加,这在蛋白水平上得到进一步验证。我们证明了小胶质细胞在α-突触核蛋白过表达诱导的神经元病变形成过程中发挥不良作用,它们的缺失重塑了ECM并有助于损伤后的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
期刊最新文献
VisionMD: an open-source tool for video-based analysis of motor function in movement disorders Author Correction: MRgFUS subthalamotomy in Parkinson's disease: an approach aimed at minimizing Lesion Volume. Clinically probable RBD is an early predictor of malignant non-motor Parkinson’s disease phenotypes Morphological and functional decline of the SNc in a model of progressive parkinsonism Multiomics approach identifies dysregulated lipidomic and proteomic networks in Parkinson’s disease patients mutated in TMEM175
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1