Engineering of Hierarchical Z-scheme ZnSe/Fe2O3 Heterojunction Cubic Nanocages for Enhanced CO2 to CO Photoconversion

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2025-01-09 DOI:10.1039/d4ta08619h
jinyu Bao, Yajie Chen, jiajia Zhang, wenpeng Li, fanze Zeng, lu Liu, Guohui Tian
{"title":"Engineering of Hierarchical Z-scheme ZnSe/Fe2O3 Heterojunction Cubic Nanocages for Enhanced CO2 to CO Photoconversion","authors":"jinyu Bao, Yajie Chen, jiajia Zhang, wenpeng Li, fanze Zeng, lu Liu, Guohui Tian","doi":"10.1039/d4ta08619h","DOIUrl":null,"url":null,"abstract":"The photocatalytic conversion of CO2 into fuels is a promising strategy for the achievement of global carbon neutrality. However, the weak redox reaction ability and fast charge recombination rate of a single component catalyst remain a huge bottleneck. To overcome these disadvantages, herein, hierarchical Z-scheme ZnSe/Fe2O3 heterojunction hollow cubic nanocages were designed and prepared involving Fe2O3 cubic nanocages (CNCs) derived through the straightforward thermal annealing of the FeOOH CNCs synthesized based on Pearson's principle using Cu2O as a sacrificial template and the following immobilization of ZnSe nanoparticles derived from the selenization of ZIF-8 nanolayer on the Fe2O3 CNCs. The experimental characterizations reveal that the Z-scheme ZnSe/Fe2O3 heterojunction cubic nanocage structure promotes efficient charge separation/transfer and preserves the reduction and oxidation abilities of the composites. These advantages make the optimized Z-scheme ZnSe/Fe2O3 CNC composite exhibits an excellent CO2 photoreduction performance compared to the pristine ZnSe with a CO yield of 30.8 µmol g-1 h-1. This work provides a new perspective on constructing photocatalyst systems with Z-scheme heterojunctions to enhance photocatalytic performance.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"19 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta08619h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic conversion of CO2 into fuels is a promising strategy for the achievement of global carbon neutrality. However, the weak redox reaction ability and fast charge recombination rate of a single component catalyst remain a huge bottleneck. To overcome these disadvantages, herein, hierarchical Z-scheme ZnSe/Fe2O3 heterojunction hollow cubic nanocages were designed and prepared involving Fe2O3 cubic nanocages (CNCs) derived through the straightforward thermal annealing of the FeOOH CNCs synthesized based on Pearson's principle using Cu2O as a sacrificial template and the following immobilization of ZnSe nanoparticles derived from the selenization of ZIF-8 nanolayer on the Fe2O3 CNCs. The experimental characterizations reveal that the Z-scheme ZnSe/Fe2O3 heterojunction cubic nanocage structure promotes efficient charge separation/transfer and preserves the reduction and oxidation abilities of the composites. These advantages make the optimized Z-scheme ZnSe/Fe2O3 CNC composite exhibits an excellent CO2 photoreduction performance compared to the pristine ZnSe with a CO yield of 30.8 µmol g-1 h-1. This work provides a new perspective on constructing photocatalyst systems with Z-scheme heterojunctions to enhance photocatalytic performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层状Z-scheme ZnSe/Fe2O3异质结立方纳米笼增强CO2到CO光转换的工程研究
光催化将二氧化碳转化为燃料是实现全球碳中和的一种很有前途的策略。然而,单组分催化剂氧化还原反应能力弱、电荷重组速度快仍然是一个巨大的瓶颈。为了克服这些缺点,本文设计并制备了分层Z-scheme ZnSe/Fe2O3异质结空心立方纳米笼,其中Fe2O3立方纳米笼是由基于Pearson原理合成的FeOOH纳米笼(Cu2O作为牺牲模板)通过直接热退火得到的,然后将ZIF-8纳米层硒化得到的ZnSe纳米颗粒固定在Fe2O3纳米笼上。实验表征表明,Z-scheme ZnSe/Fe2O3异质结立方纳米笼结构促进了有效的电荷分离/转移,并保持了复合材料的还原和氧化能力。这些优点使得优化后的Z-scheme ZnSe/Fe2O3 CNC复合材料与原始ZnSe相比具有优异的CO2光还原性能,CO产率为30.8µmol g-1 h-1。本研究为构建具有z型异质结的光催化体系以提高光催化性能提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Eliminating water molecules through tailored crystal orientation to enhance the lithium storage capacity of iron oxalate Morphology and doping engineering of sulfur-doped g-C3N4 hollow nanovesicles for boosting photocatalytic hydrogen production Electronic structure exquisite restructuring of cobalt phosphide via rationally controlling iron induction for water splitting at industrial condition Artificial Interface Engineering to Achieve High-performance Garnet-based Solid-State Lithium Metal Batteries. Stabilization of zinc metal electrodes by solvation structure modulation of Zn(NTf2)2 electrolyte additives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1