Rapid High-Sensitivity Analysis of Methane Clumped Isotopes (Δ13CH3D and Δ12CH2D2) Using Mid-Infrared Laser Spectroscopy

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-08 DOI:10.1021/acs.analchem.4c05406
Naizhong Zhang, Ivan Prokhorov, Nico Kueter, Gang Li, Béla Tuzson, Paul M. Magyar, Volker Ebert, Malavika Sivan, Mayuko Nakagawa, Alexis Gilbert, Yuichiro Ueno, Naohiro Yoshida, Thomas Röckmann, Stefano M. Bernasconi, Lukas Emmenegger, Joachim Mohn
{"title":"Rapid High-Sensitivity Analysis of Methane Clumped Isotopes (Δ13CH3D and Δ12CH2D2) Using Mid-Infrared Laser Spectroscopy","authors":"Naizhong Zhang, Ivan Prokhorov, Nico Kueter, Gang Li, Béla Tuzson, Paul M. Magyar, Volker Ebert, Malavika Sivan, Mayuko Nakagawa, Alexis Gilbert, Yuichiro Ueno, Naohiro Yoshida, Thomas Röckmann, Stefano M. Bernasconi, Lukas Emmenegger, Joachim Mohn","doi":"10.1021/acs.analchem.4c05406","DOIUrl":null,"url":null,"abstract":"Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH<sub>4</sub> gas, which significantly limits its application to natural samples. To enhance the performance of spectroscopic measurement of methane clumped isotopes, we established a laser spectroscopic platform with newly selected spectral windows for clumped isotope analysis: 1076.97 cm<sup>–1</sup> for <sup>12</sup>CH<sub>2</sub>D<sub>2</sub> and 1163.47 cm<sup>–1</sup> for <sup>13</sup>CH<sub>3</sub>D, and a custom-built gas inlet system. These spectral windows were identified through an extensive spectral survey on newly recorded high-resolution Fourier transform infrared (FTIR) spectra across the wavelength range of 870–3220 cm<sup>–1</sup>, thereby addressing gaps for <sup>12</sup>CH<sub>2</sub>D<sub>2</sub> in existing spectral databases. In addition, we implemented several key technological advances, which result in superior control and performance of sample injection and analysis. We demonstrate that for small samples ranging from 3 to 10 mL (0.12–0.41 mmol) of CH<sub>4</sub> gas, a measurement precision comparable to high-resolution isotope ratio mass spectrometry for Δ<sup>12</sup>CH<sub>2</sub>D<sub>2</sub> (∼1.5‰) can be achieved through 3 to 8 repetitive measurements using a recycle-refilling system within a few hours. Samples larger than 10 mL can be quantified in under 20 min. At the same time, for Δ<sup>13</sup>CH<sub>3</sub>D analysis a repeatability of 0.05‰, superior to mass spectrometry, was realized. These advancements in reducing sample size and shortening analysis time significantly improve the practicality of the spectroscopic technique for determining the clumped isotope signatures of natural methane samples, particularly for applications involving low CH<sub>4</sub> concentrations or requiring consecutive analyses, which are feasible in conjunction with an automated preconcentration system.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"31 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH4 gas, which significantly limits its application to natural samples. To enhance the performance of spectroscopic measurement of methane clumped isotopes, we established a laser spectroscopic platform with newly selected spectral windows for clumped isotope analysis: 1076.97 cm–1 for 12CH2D2 and 1163.47 cm–1 for 13CH3D, and a custom-built gas inlet system. These spectral windows were identified through an extensive spectral survey on newly recorded high-resolution Fourier transform infrared (FTIR) spectra across the wavelength range of 870–3220 cm–1, thereby addressing gaps for 12CH2D2 in existing spectral databases. In addition, we implemented several key technological advances, which result in superior control and performance of sample injection and analysis. We demonstrate that for small samples ranging from 3 to 10 mL (0.12–0.41 mmol) of CH4 gas, a measurement precision comparable to high-resolution isotope ratio mass spectrometry for Δ12CH2D2 (∼1.5‰) can be achieved through 3 to 8 repetitive measurements using a recycle-refilling system within a few hours. Samples larger than 10 mL can be quantified in under 20 min. At the same time, for Δ13CH3D analysis a repeatability of 0.05‰, superior to mass spectrometry, was realized. These advancements in reducing sample size and shortening analysis time significantly improve the practicality of the spectroscopic technique for determining the clumped isotope signatures of natural methane samples, particularly for applications involving low CH4 concentrations or requiring consecutive analyses, which are feasible in conjunction with an automated preconcentration system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1