A Robust and Sensitive New Peak Detection and Identification Method for Mass Spectrometry-Based Differential Analysis in Biologics Characterization

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-08 DOI:10.1021/acs.analchem.4c04913
Qinjingwen Cao, John Guan, Delia Li, Jennifer Zhang, Riley Togashi, Elizabeth J. Johnson, Wayman Chan, Jia Guo, Peilu Liu, Yiran Liang, Lance Cadang, Anna Mah, John Briggs, Bing Zhang, Stephan Galvan, Monica Sadek, Kevin M. Legg, K. Ilker Sen, Maria Basanta-Sanchez, Luis Fernández Ruiz, Feng Yang
{"title":"A Robust and Sensitive New Peak Detection and Identification Method for Mass Spectrometry-Based Differential Analysis in Biologics Characterization","authors":"Qinjingwen Cao, John Guan, Delia Li, Jennifer Zhang, Riley Togashi, Elizabeth J. Johnson, Wayman Chan, Jia Guo, Peilu Liu, Yiran Liang, Lance Cadang, Anna Mah, John Briggs, Bing Zhang, Stephan Galvan, Monica Sadek, Kevin M. Legg, K. Ilker Sen, Maria Basanta-Sanchez, Luis Fernández Ruiz, Feng Yang","doi":"10.1021/acs.analchem.4c04913","DOIUrl":null,"url":null,"abstract":"New peak detection (NPD) is a significant component of the multiattribute method (MAM) for MS use to facilitate the detection of quality attributes exhibiting abnormal ratio changes, vanishing attributes, or newly emerging attributes. However, challenges remain to get a balanced sensitivity and minimize false positives in NPD. In this study, we have developed a robust NPD and identification method to enhance sensitivity 10-fold (0.5% spike-in) compared to previously reported work while maintaining controlled false positives via a statistics-driven experimental design utilizing three control samples and a product-specific peptide library. This method not only enables MAM to replace conventional analytical methods for quality attribute control, but also provides a new and objective way of performing differential analysis of LC-MS-based experiments at different stages of the biopharmaceutics process development.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"104 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New peak detection (NPD) is a significant component of the multiattribute method (MAM) for MS use to facilitate the detection of quality attributes exhibiting abnormal ratio changes, vanishing attributes, or newly emerging attributes. However, challenges remain to get a balanced sensitivity and minimize false positives in NPD. In this study, we have developed a robust NPD and identification method to enhance sensitivity 10-fold (0.5% spike-in) compared to previously reported work while maintaining controlled false positives via a statistics-driven experimental design utilizing three control samples and a product-specific peptide library. This method not only enables MAM to replace conventional analytical methods for quality attribute control, but also provides a new and objective way of performing differential analysis of LC-MS-based experiments at different stages of the biopharmaceutics process development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Your Blood is Out for Delivery: Considerations of Shipping Time and Temperature on Degradation of RNA from Stabilized Whole Blood Two-Step Acoustic Cell Separation Based on Cell Size and Acoustic Impedance─toward Isolation of Viable Circulating Tumor Cells NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties Integrating C–H Information to Improve Machine Learning Classification Models for Microplastic Identification from Raman Spectra A Dual-Mode Colorimetric and Fluorescence Biosensor Based on a Nucleic Acid Multiplexing Platform for the Detection of Listeria monocytogenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1