A Robust and Sensitive New Peak Detection and Identification Method for Mass Spectrometry-Based Differential Analysis in Biologics Characterization

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-08 DOI:10.1021/acs.analchem.4c04913
Qinjingwen Cao, John Guan, Delia Li, Jennifer Zhang, Riley Togashi, Elizabeth J. Johnson, Wayman Chan, Jia Guo, Peilu Liu, Yiran Liang, Lance Cadang, Anna Mah, John Briggs, Bing Zhang, Stephan Galvan, Monica Sadek, Kevin M. Legg, K. Ilker Sen, Maria Basanta-Sanchez, Luis Fernández Ruiz, Feng Yang
{"title":"A Robust and Sensitive New Peak Detection and Identification Method for Mass Spectrometry-Based Differential Analysis in Biologics Characterization","authors":"Qinjingwen Cao, John Guan, Delia Li, Jennifer Zhang, Riley Togashi, Elizabeth J. Johnson, Wayman Chan, Jia Guo, Peilu Liu, Yiran Liang, Lance Cadang, Anna Mah, John Briggs, Bing Zhang, Stephan Galvan, Monica Sadek, Kevin M. Legg, K. Ilker Sen, Maria Basanta-Sanchez, Luis Fernández Ruiz, Feng Yang","doi":"10.1021/acs.analchem.4c04913","DOIUrl":null,"url":null,"abstract":"New peak detection (NPD) is a significant component of the multiattribute method (MAM) for MS use to facilitate the detection of quality attributes exhibiting abnormal ratio changes, vanishing attributes, or newly emerging attributes. However, challenges remain to get a balanced sensitivity and minimize false positives in NPD. In this study, we have developed a robust NPD and identification method to enhance sensitivity 10-fold (0.5% spike-in) compared to previously reported work while maintaining controlled false positives via a statistics-driven experimental design utilizing three control samples and a product-specific peptide library. This method not only enables MAM to replace conventional analytical methods for quality attribute control, but also provides a new and objective way of performing differential analysis of LC-MS-based experiments at different stages of the biopharmaceutics process development.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"104 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04913","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New peak detection (NPD) is a significant component of the multiattribute method (MAM) for MS use to facilitate the detection of quality attributes exhibiting abnormal ratio changes, vanishing attributes, or newly emerging attributes. However, challenges remain to get a balanced sensitivity and minimize false positives in NPD. In this study, we have developed a robust NPD and identification method to enhance sensitivity 10-fold (0.5% spike-in) compared to previously reported work while maintaining controlled false positives via a statistics-driven experimental design utilizing three control samples and a product-specific peptide library. This method not only enables MAM to replace conventional analytical methods for quality attribute control, but also provides a new and objective way of performing differential analysis of LC-MS-based experiments at different stages of the biopharmaceutics process development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种鲁棒灵敏的基于质谱的生物制剂鉴别分析新峰检测与鉴定方法
新峰检测(NPD)是多属性方法(MAM)的重要组成部分,用于MS用于检测显示异常比率变化,消失属性或新出现属性的质量属性。然而,在NPD中获得平衡的灵敏度和最小化误报仍然存在挑战。在这项研究中,我们开发了一种强大的NPD和识别方法,与之前报道的工作相比,灵敏度提高了10倍(0.5%峰值),同时通过使用三个对照样本和产品特异性肽库的统计驱动实验设计保持控制假阳性。该方法不仅使MAM能够取代传统的分析方法进行质量属性控制,而且为在生物制药工艺开发的不同阶段进行基于lc - ms的实验差异分析提供了一种新的、客观的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
NIR-II Fluorescent Timer-Embedded Drug for Real-Time Tracing of Immunogenic Cell Death and Guiding Chemo-immunotherapy Quantum Dot Digital Immunoassays on a Recyclable High-Refractive-Index Bead Array Imaged with a Low-Numerical-Aperture Objective Water Radical Anion/Cation Pair-Induced C–F Activation for Sensitive Ambient Mass Spectrometry of Perfluoroalkanes Substrate-Driven Coenzyme Activating Oxidase-Like Activity of Copper-Based Nanozymes for Robust Profiling of Sulfonamides Correction to “In Situ Derivatization Combined with DESI-MRM-MS/MS for Spatial Mapping Intratissue Amine-Containing Metabolites, Trimethylamine as a Case”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1