Melissa R. Fitzsimmons, Bart Roose, Yutong Han, Taeheon Kang, Yu-Hsien Chiang, Chieh-Szu Huang, Yang Lu, Terry Chien-Jen Yang, Cullen Chosy, Shaoliang Guan, Miguel Anaya, Samuel D. Stranks
{"title":"Optimized Graphene-Oxide-Based Interconnecting Layer in All-Perovskite Tandem Solar Cells","authors":"Melissa R. Fitzsimmons, Bart Roose, Yutong Han, Taeheon Kang, Yu-Hsien Chiang, Chieh-Szu Huang, Yang Lu, Terry Chien-Jen Yang, Cullen Chosy, Shaoliang Guan, Miguel Anaya, Samuel D. Stranks","doi":"10.1021/acsenergylett.4c03065","DOIUrl":null,"url":null,"abstract":"All-perovskite tandem solar cells represent a significant advancement in next-generation photovoltaics toward higher power conversion efficiencies than single junction cells. A critical component of a monolithic tandem solar cell is the interconnecting layer, which facilitates the integration of the wide bandgap and low bandgap subcells. Conventional designs in all-perovskite tandem cells are based on an ultrathin metal recombination layer, typically Au, alongside a poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hole transporting layer, which introduce optical and recombination losses, and instabilities. Here, we present a new interconnecting layer based on a graphene-oxide recombination layer, which facilitates the replacement of PEDOT:PSS with the preferred self-assembled monolayer [2-(9<i>H</i>-carbazol-9-yl)ethyl]phosphonic acid (2PACz). This device architecture results in significantly reduced optical and nonradiative losses, leading to champion device efficiency of 23.4% compared to 19.7% with the conventional layers, along with improvements in stability. This work solves a critical challenge in all-perovskite tandem cell device design.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"28 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03065","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-perovskite tandem solar cells represent a significant advancement in next-generation photovoltaics toward higher power conversion efficiencies than single junction cells. A critical component of a monolithic tandem solar cell is the interconnecting layer, which facilitates the integration of the wide bandgap and low bandgap subcells. Conventional designs in all-perovskite tandem cells are based on an ultrathin metal recombination layer, typically Au, alongside a poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hole transporting layer, which introduce optical and recombination losses, and instabilities. Here, we present a new interconnecting layer based on a graphene-oxide recombination layer, which facilitates the replacement of PEDOT:PSS with the preferred self-assembled monolayer [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz). This device architecture results in significantly reduced optical and nonradiative losses, leading to champion device efficiency of 23.4% compared to 19.7% with the conventional layers, along with improvements in stability. This work solves a critical challenge in all-perovskite tandem cell device design.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.