ECMO: An Efficient and Confidential Outsourcing Protocol for Medical Data

Xiangyi Meng;Yuefeng Du;Cong Wang
{"title":"ECMO: An Efficient and Confidential Outsourcing Protocol for Medical Data","authors":"Xiangyi Meng;Yuefeng Du;Cong Wang","doi":"10.1109/OJCS.2024.3506114","DOIUrl":null,"url":null,"abstract":"Cloud computing has significantly advanced medical data storage capabilities, enabling healthcare institutions to outsource data management. However, this shift introduces critical security and privacy risks, as sensitive patient information is stored on untrusted third-party servers. Existing cryptographic solutions, such as searchable encryption, offer some security guarantees but struggle with challenges like leakage-based attacks, high computational overhead, and limited scalability. To address these limitations in medical data outsourcing, we present ECMO, a novel protocol that combines an ordered additive secret sharing algorithm with a unique index permutation method. This approach efficiently outsources medical data while safeguarding both the data itself and access patterns from potential leakage. Our experimental results demonstrate ECMO's efficiency and scalability, with a single store operation containing 500 keywords taking only \n<inline-formula><tex-math>$42.5 \\;\\mu s$</tex-math></inline-formula>\n on average.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"37-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767272","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10767272/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing has significantly advanced medical data storage capabilities, enabling healthcare institutions to outsource data management. However, this shift introduces critical security and privacy risks, as sensitive patient information is stored on untrusted third-party servers. Existing cryptographic solutions, such as searchable encryption, offer some security guarantees but struggle with challenges like leakage-based attacks, high computational overhead, and limited scalability. To address these limitations in medical data outsourcing, we present ECMO, a novel protocol that combines an ordered additive secret sharing algorithm with a unique index permutation method. This approach efficiently outsources medical data while safeguarding both the data itself and access patterns from potential leakage. Our experimental results demonstrate ECMO's efficiency and scalability, with a single store operation containing 500 keywords taking only $42.5 \;\mu s$ on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECMO:医疗数据的高效和保密外包协议
云计算具有非常先进的医疗数据存储功能,使医疗保健机构能够外包数据管理。然而,这种转变带来了严重的安全和隐私风险,因为敏感的患者信息存储在不受信任的第三方服务器上。现有的加密解决方案(如可搜索的加密)提供了一些安全保证,但面临着诸如基于泄漏的攻击、高计算开销和有限的可伸缩性等挑战。为了解决医疗数据外包中的这些限制,我们提出了ECMO,这是一种将有序加性秘密共享算法与唯一索引排列方法相结合的新协议。这种方法可以有效地外包医疗数据,同时保护数据本身和访问模式免受潜在泄漏。我们的实验结果证明了ECMO的效率和可扩展性,单个包含500个关键词的存储操作平均仅花费42.5美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Deep Learning and Quantum Optimization Framework for Ransomware Response in Healthcare Analysis of Transferable Adversarial Evasion Attack Detection in IoT and Industrial ADS Texture Dataset Generator With Repeatable Patterns From a Single Sample Applied to Historical Tiles From Belém, Pará, Brazil IEEE Open Journal of the Computer Society Information for Authors Model-Based Calculation Method of Mining Fairness in Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1