Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation

Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan
{"title":"Enhanced Lithographic Hotspot Detection via Multi-Task Deep Learning With Synthetic Pattern Generation","authors":"Xinguang Zhang;Shiyang Chen;Zhouhang Shao;Yongjie Niu;Li Fan","doi":"10.1109/OJCS.2024.3510555","DOIUrl":null,"url":null,"abstract":"Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"140-151"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772617","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772617/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithographic hotspot detection is crucial for ensuring manufacturability and yield in advanced integrated circuit (IC) designs. While machine learning approaches have shown promise, they often struggle with detecting truly-never-seen-before (TNSB) hotspots and reducing false alarms on hard-to-classify (HTC) patterns. This article presents a novel multi-task deep learning framework for lithographic hotspot detection that addresses these challenges. Our key contributions include: (1) A synthetic pattern generation method based on early design space exploration (EDSE) to augment training data and improve TNSB hotspot detection; (2) A multi-task convolutional neural network architecture that jointly performs hotspot classification and localization; and (3) An adaptive loss function that balances hotspot detection accuracy and false alarm reduction. Experimental results on the ICCAD-2019 benchmark dataset demonstrate that our approach achieves 98.5% accuracy in hotspot detection with only 1.2% false alarm rate, significantly outperforming state-of-the-art methods. Furthermore, we show a 22% improvement in TNSB hotspot detection and a 5X reduction in false alarms on HTC patterns compared to previous techniques. The proposed framework provides a robust solution for lithographic hotspot detection in early stages of IC design, enabling more efficient design-for-manufacturability optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于合成模式生成的多任务深度学习增强光刻热点检测
在先进集成电路(IC)设计中,光刻热点检测是保证可制造性和良率的关键。虽然机器学习方法已经显示出了希望,但它们经常在检测从未见过的热点(TNSB)和减少难以分类(HTC)模式的误报方面遇到困难。本文提出了一种新的多任务深度学习框架,用于光刻热点检测,以解决这些挑战。我们的主要贡献包括:(1)基于早期设计空间探索(EDSE)的综合模式生成方法,以增强训练数据并改进TNSB热点检测;(2)联合进行热点分类和定位的多任务卷积神经网络架构;(3)平衡热点检测精度和虚警减少的自适应损失函数。在ICCAD-2019基准数据集上的实验结果表明,我们的方法在热点检测中达到98.5%的准确率,只有1.2%的误报率,显著优于目前最先进的方法。此外,与以前的技术相比,我们在TNSB热点检测方面提高了22%,在HTC模式上减少了5倍的误报。该框架为集成电路设计早期的光刻热点检测提供了强大的解决方案,实现了更有效的可制造性优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Deep Learning and Quantum Optimization Framework for Ransomware Response in Healthcare Analysis of Transferable Adversarial Evasion Attack Detection in IoT and Industrial ADS Texture Dataset Generator With Repeatable Patterns From a Single Sample Applied to Historical Tiles From Belém, Pará, Brazil IEEE Open Journal of the Computer Society Information for Authors Model-Based Calculation Method of Mining Fairness in Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1