Quanqing Xu;Xiang He;Muhao Xu;Kaixuan Hu;Weiye Song
{"title":"A Dual-Branch Multidomain Feature Fusion Network for Axial Super-Resolution in Optical Coherence Tomography","authors":"Quanqing Xu;Xiang He;Muhao Xu;Kaixuan Hu;Weiye Song","doi":"10.1109/LSP.2024.3509337","DOIUrl":null,"url":null,"abstract":"High-resolution retinal optical coherence tomography(OCT) images are crucial for the diagnosis of numerous retinal diseases, but images acquired by narrow bandwidth OCT devices suffer from axial resolution degradation and are difficult to support disease diagnosis. Deep learning-based methods can enhance the axial resolution of OCT images, but most methods focus on improving the model architecture, the potential of fully exploiting the fusion of spatial and frequency domain information for image reconstruction has not been fully explored. This paper proposes a Dual-branch Multidomain Feature Fusion Network (MDFNet). The core module of the model consists of a parallel Enhanced Multi-scale Spatial Feature module and an Auxiliary Frequcy Feature module to provide non-interfering dual-domain feature information to improve the reconstruction effect. MDFNet achieved the best performance in the tests of mouse retina and human retina datasets, outperforming the state-of-the-art (SOTA) algorithms by 0.11 dB and 0.18 dB respectively. In addition, the results of this method performed best in the retinal layer segmentation test.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"461-465"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771640/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution retinal optical coherence tomography(OCT) images are crucial for the diagnosis of numerous retinal diseases, but images acquired by narrow bandwidth OCT devices suffer from axial resolution degradation and are difficult to support disease diagnosis. Deep learning-based methods can enhance the axial resolution of OCT images, but most methods focus on improving the model architecture, the potential of fully exploiting the fusion of spatial and frequency domain information for image reconstruction has not been fully explored. This paper proposes a Dual-branch Multidomain Feature Fusion Network (MDFNet). The core module of the model consists of a parallel Enhanced Multi-scale Spatial Feature module and an Auxiliary Frequcy Feature module to provide non-interfering dual-domain feature information to improve the reconstruction effect. MDFNet achieved the best performance in the tests of mouse retina and human retina datasets, outperforming the state-of-the-art (SOTA) algorithms by 0.11 dB and 0.18 dB respectively. In addition, the results of this method performed best in the retinal layer segmentation test.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.