{"title":"Task Selection and Resource Optimization in Multi-Task Federated Learning With Model Decomposition","authors":"Haowen Sun;Ming Chen;Zhaohui Yang;Yijin Pan;Yihan Cang;Zhaoyang Zhang","doi":"10.1109/LCOMM.2024.3511663","DOIUrl":null,"url":null,"abstract":"In this letter, we investigate the training latency minimization problem for a multi-task federated learning (FL) framework with model decomposition over wireless communication networks. To handle the non-independent and non-identically distributed (non-IID) data, we first transform the multi-class classification task into multiple binary classification tasks. We then introduce sampling equalization to ensure the convergence of FL system. The optimization problem aims to minimize the training latency under energy and FL convergence constraints by optimizing task selection, number of learning iterations, and communication resource allocation. We decompose it into three sub-problems and propose alternating algorithm to address each sub-problem iteratively. Numerical results validate that the proposed algorithm significantly reduces time consumption compared to the conventional algorithms.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 1","pages":"225-229"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778551/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we investigate the training latency minimization problem for a multi-task federated learning (FL) framework with model decomposition over wireless communication networks. To handle the non-independent and non-identically distributed (non-IID) data, we first transform the multi-class classification task into multiple binary classification tasks. We then introduce sampling equalization to ensure the convergence of FL system. The optimization problem aims to minimize the training latency under energy and FL convergence constraints by optimizing task selection, number of learning iterations, and communication resource allocation. We decompose it into three sub-problems and propose alternating algorithm to address each sub-problem iteratively. Numerical results validate that the proposed algorithm significantly reduces time consumption compared to the conventional algorithms.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.