Jiongyu Dai;Lianjun Li;Ramin Safavinejad;Shadab Mahboob;Hao Chen;Vishnu V Ratnam;Haining Wang;Jianzhong Zhang;Lingjia Liu
{"title":"O-RAN-Enabled Intelligent Network Slicing to Meet Service-Level Agreement (SLA)","authors":"Jiongyu Dai;Lianjun Li;Ramin Safavinejad;Shadab Mahboob;Hao Chen;Vishnu V Ratnam;Haining Wang;Jianzhong Zhang;Lingjia Liu","doi":"10.1109/TMC.2024.3476338","DOIUrl":null,"url":null,"abstract":"Network slicing plays a critical role in enabling multiple virtualized and independent network services to be created on top of a common physical network infrastructure. In this paper, we introduce a deep reinforcement learning (DRL)-based radio resource management (RRM) solution for radio access network (RAN) slicing under service-level agreement (SLA) guarantees. The objective of this solution is to minimize the SLA violation. Our method is designed with a two-level scheduling structure that works seamlessly under Open Radio Access Network (O-RAN) architecture. Specifically, at an upper level, a DRL-based inter-slice scheduler is working on a coarse time granularity to allocate resources to network slices. And at a lower level, an existing intra-slice scheduler such as proportional fair (PF) is working on a fine time granularity to allocate slice dedicated resources to slice users. This setting makes our solution O-RAN compliant and ready to be deployed as an ‘xApp’ on the RAN Intelligent Controller (RIC). For performance evaluation and proof of concept purposes, we develop two platforms, one industry-level simulator and one O-RAN compliant testbed; evaluation on both platforms demonstrates our solution’s superior performance over conventional methods.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"890-906"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10721269/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Network slicing plays a critical role in enabling multiple virtualized and independent network services to be created on top of a common physical network infrastructure. In this paper, we introduce a deep reinforcement learning (DRL)-based radio resource management (RRM) solution for radio access network (RAN) slicing under service-level agreement (SLA) guarantees. The objective of this solution is to minimize the SLA violation. Our method is designed with a two-level scheduling structure that works seamlessly under Open Radio Access Network (O-RAN) architecture. Specifically, at an upper level, a DRL-based inter-slice scheduler is working on a coarse time granularity to allocate resources to network slices. And at a lower level, an existing intra-slice scheduler such as proportional fair (PF) is working on a fine time granularity to allocate slice dedicated resources to slice users. This setting makes our solution O-RAN compliant and ready to be deployed as an ‘xApp’ on the RAN Intelligent Controller (RIC). For performance evaluation and proof of concept purposes, we develop two platforms, one industry-level simulator and one O-RAN compliant testbed; evaluation on both platforms demonstrates our solution’s superior performance over conventional methods.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.