Yosefine Triwidyastuti;Tri Nhu Do;Ridho Hendra Yoga Perdana;Kyusung Shim;Beongku An
{"title":"Transfer Learning-Empowered Physical Layer Security in Aerial Reconfigurable Intelligent Surfaces-Based Mobile Networks","authors":"Yosefine Triwidyastuti;Tri Nhu Do;Ridho Hendra Yoga Perdana;Kyusung Shim;Beongku An","doi":"10.1109/ACCESS.2025.3526178","DOIUrl":null,"url":null,"abstract":"This paper investigates the enhancement of physical layer security (PHY security) in Reconfigurable Intelligent Surfaces (RIS)-aided terrestrial and non-terrestrial networks (TN/NTN), focusing on the challenges posed by node mobility. In the context of next-generation mobile networks, ensuring secure communication is critical, especially under varying channel conditions caused by mobility. We explore different mobility models, including random walk, Gauss-Markov, and reference point group mobility, to assess their impact on key security metrics such as secrecy capacity and average secrecy rate. To address these challenges, we develop robust algorithms for optimizing the phase-shift configurations of RIS. Additionally, we employ Artificial Intelligence (AI) and Machine Learning (ML) techniques, specifically Deep Neural Networks (DNN), for performance prediction of PHY security metrics. We also leverage transfer learning to enhance model robustness across different mobility scenarios through domain adaptation. Our results demonstrate the effectiveness of our proposed methods in maintaining high levels of PHY security despite the dynamic nature of the channel conditions and the mobility of nodes. The proposed phase-shift configuration algorithms and ML-based solutions ensure secure and resilient communication in aerial RIS-aided TN/NTN, contributing to the advancement of secure mobile networks.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"5471-5490"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829561","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829561/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the enhancement of physical layer security (PHY security) in Reconfigurable Intelligent Surfaces (RIS)-aided terrestrial and non-terrestrial networks (TN/NTN), focusing on the challenges posed by node mobility. In the context of next-generation mobile networks, ensuring secure communication is critical, especially under varying channel conditions caused by mobility. We explore different mobility models, including random walk, Gauss-Markov, and reference point group mobility, to assess their impact on key security metrics such as secrecy capacity and average secrecy rate. To address these challenges, we develop robust algorithms for optimizing the phase-shift configurations of RIS. Additionally, we employ Artificial Intelligence (AI) and Machine Learning (ML) techniques, specifically Deep Neural Networks (DNN), for performance prediction of PHY security metrics. We also leverage transfer learning to enhance model robustness across different mobility scenarios through domain adaptation. Our results demonstrate the effectiveness of our proposed methods in maintaining high levels of PHY security despite the dynamic nature of the channel conditions and the mobility of nodes. The proposed phase-shift configuration algorithms and ML-based solutions ensure secure and resilient communication in aerial RIS-aided TN/NTN, contributing to the advancement of secure mobile networks.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.