Multi-Target Device-Free Positioning Based on Spatial-Temporal mmWave Point Cloud

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-10-04 DOI:10.1109/TMC.2024.3474671
Jie Wang;Jingmiao Wu;Yingwei Qu;Qi Xiao;Qinghua Gao;Yuguang Fang
{"title":"Multi-Target Device-Free Positioning Based on Spatial-Temporal mmWave Point Cloud","authors":"Jie Wang;Jingmiao Wu;Yingwei Qu;Qi Xiao;Qinghua Gao;Yuguang Fang","doi":"10.1109/TMC.2024.3474671","DOIUrl":null,"url":null,"abstract":"Device-free positioning (DFP) using mmWave signals is an emerging technique that could track a target without attaching any devices. It conducts position estimation by analyzing the influence of targets on their surrounding mmWave signals. With the widespread utilization of mmWave signals, DFP will have many potential applications in tracking pedestrians and robots in intelligent monitoring systems. State-of-the-art DFP work has already achieved excellent positioning performance when there is one target only, but when there are multiple targets, the time-varying target state, such as entering or leaving of the wireless coverage area and close interactions, makes it challenging to track every target. To solve these problems, in this paper, we propose a spatial-temporal analysis method to robustly track multiple targets based on the high precision mmWave point cloud information. Specifically, we propose a high precision spatial imaging strategy to construct fine-grained mmWave point cloud of the targets, design a spatial-temporal point cloud clustering method to determine the target state, and then leverage a gait based identity and trajectory association scheme and a particle filter to achieve robust identity-aware tracking. Extensive evaluations on a 77 GHz mmWave testbed have been conducted to demonstrate the effectiveness and robustness of our proposed schemes.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"1163-1180"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705685/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Device-free positioning (DFP) using mmWave signals is an emerging technique that could track a target without attaching any devices. It conducts position estimation by analyzing the influence of targets on their surrounding mmWave signals. With the widespread utilization of mmWave signals, DFP will have many potential applications in tracking pedestrians and robots in intelligent monitoring systems. State-of-the-art DFP work has already achieved excellent positioning performance when there is one target only, but when there are multiple targets, the time-varying target state, such as entering or leaving of the wireless coverage area and close interactions, makes it challenging to track every target. To solve these problems, in this paper, we propose a spatial-temporal analysis method to robustly track multiple targets based on the high precision mmWave point cloud information. Specifically, we propose a high precision spatial imaging strategy to construct fine-grained mmWave point cloud of the targets, design a spatial-temporal point cloud clustering method to determine the target state, and then leverage a gait based identity and trajectory association scheme and a particle filter to achieve robust identity-aware tracking. Extensive evaluations on a 77 GHz mmWave testbed have been conducted to demonstrate the effectiveness and robustness of our proposed schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空毫米波点云的多目标无设备定位
使用毫米波信号的无设备定位(DFP)是一种新兴技术,可以在不附加任何设备的情况下跟踪目标。它通过分析目标对周围毫米波信号的影响进行位置估计。随着毫米波信号的广泛应用,DFP将在智能监控系统中跟踪行人和机器人方面具有许多潜在的应用。目前最先进的DFP工作在只有一个目标时已经取得了优异的定位性能,但是当有多个目标时,目标的时变状态,如进入或离开无线覆盖区域,以及密切的相互作用,给跟踪每个目标带来了挑战。针对这些问题,本文提出了一种基于高精度毫米波点云信息的多目标鲁棒跟踪的时空分析方法。具体而言,我们提出了一种高精度空间成像策略来构建目标的细粒度毫米波点云,设计了一种时空点云聚类方法来确定目标状态,然后利用基于步态的身份和轨迹关联方案和粒子滤波来实现鲁棒身份感知跟踪。在77 GHz毫米波测试台上进行了广泛的评估,以证明我们提出的方案的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
2024 Reviewers List Intelligent End-to-End Deterministic Scheduling Across Converged Networks EdgeLLM: Fast On-Device LLM Inference With Speculative Decoding Offloading Game for Mobile Edge Computing With Random Access in IoT Mobile Tile-Based 360$^\circ$∘ Video Multicast With Cybersickness Alleviation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1