Ice-Tide: Implicit Cryo-ET Imaging and Deformation Estimation

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Computational Imaging Pub Date : 2024-12-23 DOI:10.1109/TCI.2024.3519805
Valentin Debarnot;Vinith Kishore;Ricardo D. Righetto;Ivan Dokmanić
{"title":"Ice-Tide: Implicit Cryo-ET Imaging and Deformation Estimation","authors":"Valentin Debarnot;Vinith Kishore;Ricardo D. Righetto;Ivan Dokmanić","doi":"10.1109/TCI.2024.3519805","DOIUrl":null,"url":null,"abstract":"We introduce ICE-TIDE, a method for cryogenic electron tomography (cryo-ET) that simultaneously aligns observations and reconstructs a high-resolution volume. The alignment of tilt series in cryo-ET is a major problem limiting the resolution of reconstructions. ICE-TIDE relies on an efficient coordinate-based implicit neural representation of the volume which enables it to directly parameterize deformations and align the projections. Furthermore, the implicit network acts as an effective regularizer, allowing for high-quality reconstruction at low signal-to-noise ratios as well as partially restoring the missing wedge information. We compare the performance of ICE-TIDE to existing approaches on realistic simulated volumes where the significant gains in resolution and accuracy of recovering deformations can be precisely evaluated. Finally, we demonstrate ICE-TIDE's ability to perform on experimental data sets.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"24-35"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10811935/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce ICE-TIDE, a method for cryogenic electron tomography (cryo-ET) that simultaneously aligns observations and reconstructs a high-resolution volume. The alignment of tilt series in cryo-ET is a major problem limiting the resolution of reconstructions. ICE-TIDE relies on an efficient coordinate-based implicit neural representation of the volume which enables it to directly parameterize deformations and align the projections. Furthermore, the implicit network acts as an effective regularizer, allowing for high-quality reconstruction at low signal-to-noise ratios as well as partially restoring the missing wedge information. We compare the performance of ICE-TIDE to existing approaches on realistic simulated volumes where the significant gains in resolution and accuracy of recovering deformations can be precisely evaluated. Finally, we demonstrate ICE-TIDE's ability to perform on experimental data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰潮:隐式冷冻et成像和变形估计
我们介绍了ICE-TIDE,这是一种低温电子断层扫描(cryo-ET)方法,可以同时校准观测结果并重建高分辨率体积。在低温et中,倾斜序列的排列是限制重建分辨率的主要问题。ICE-TIDE依赖于有效的基于坐标的隐式神经网络体积表示,使其能够直接参数化变形并对齐投影。此外,隐式网络作为一个有效的正则化器,允许在低信噪比下进行高质量的重建,并部分恢复丢失的楔形信息。我们将ICE-TIDE的性能与现有方法在真实模拟体积上的性能进行了比较,可以精确评估在恢复变形的分辨率和精度方面的显着收益。最后,我们展示了ICE-TIDE在实验数据集上的执行能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
期刊最新文献
Full Matrix Wavefield Migration for Layered Photoacoustic Imaging GroupCDL: Interpretable Denoising and Compressed Sensing MRI via Learned Group-Sparsity and Circulant Attention Looking Around Flatland: End-to-End 2D Real-Time NLOS Imaging Computational Comparison and Validation of Point Spread Functions for Optical Microscopes Estimation-Denoising Integration Network Architecture With Updated Parameter for MRI Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1