{"title":"AdaWiFi, Collaborative WiFi Sensing for Cross-Environment Adaptation","authors":"Naiyu Zheng;Yuanchun Li;Shiqi Jiang;Yuanzhe Li;Rongchun Yao;Chuchu Dong;Ting Chen;Yubo Yang;Zhimeng Yin;Yunxin Liu","doi":"10.1109/TMC.2024.3474853","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) based Wi-Fi sensing has witnessed great development in recent years. Although decent results have been achieved in certain scenarios, Wi-Fi based activity recognition is still difficult to deploy in real smart homes due to the limited cross-environment adaptability, i.e. a well-trained Wi-Fi sensing neural network in one environment is hard to adapt to other environments. To address this challenge, we propose \n<sc>AdaWiFi</small>\n, a DL-based Wi-Fi sensing framework that allows multiple Internet-of-Things (IoT) devices to collaborate and adapt to various environments effectively. The key innovation of \n<sc>AdaWiFi</small>\n includes a collective sensing model architecture that utilizes complementary information between distinct devices and avoids the biased perception of individual sensors and an accompanying model adaptation technique that can transfer the sensing model to new environments with limited data. We evaluate our system on a public dataset and a custom dataset collected from three complex sensing environments. The results demonstrate that \n<sc>AdaWiFi</small>\n is able to achieve significantly better sensing adaptation effectiveness (e.g. 30% higher accuracy with one-shot adaptation) as compared with state-of-the-art baselines.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 2","pages":"845-858"},"PeriodicalIF":7.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10715589/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) based Wi-Fi sensing has witnessed great development in recent years. Although decent results have been achieved in certain scenarios, Wi-Fi based activity recognition is still difficult to deploy in real smart homes due to the limited cross-environment adaptability, i.e. a well-trained Wi-Fi sensing neural network in one environment is hard to adapt to other environments. To address this challenge, we propose
AdaWiFi
, a DL-based Wi-Fi sensing framework that allows multiple Internet-of-Things (IoT) devices to collaborate and adapt to various environments effectively. The key innovation of
AdaWiFi
includes a collective sensing model architecture that utilizes complementary information between distinct devices and avoids the biased perception of individual sensors and an accompanying model adaptation technique that can transfer the sensing model to new environments with limited data. We evaluate our system on a public dataset and a custom dataset collected from three complex sensing environments. The results demonstrate that
AdaWiFi
is able to achieve significantly better sensing adaptation effectiveness (e.g. 30% higher accuracy with one-shot adaptation) as compared with state-of-the-art baselines.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.